您的位置:群走網>教學資源>教學反思>《乘法分配律》教學反思
《乘法分配律》教學反思
更新時間:2024-08-28 16:07:21
  • 相關推薦
《乘法分配律》教學反思15篇

  作為一位剛到崗的教師,教學是重要的工作之一,借助教學反思我們可以學習到很多講課技巧,那么優秀的教學反思是什么樣的呢?以下是小編精心整理的《乘法分配律》教學反思,歡迎閱讀,希望大家能夠喜歡。

《乘法分配律》教學反思1

  1、乘法分配律既要注重它的外形結構特點,更要注重其內涵。

  乘法分配率的結構特點,即兩數的和乘一個數(先加后乘)=兩個積的和(先乘后加),使學生從表象上進行初步感知。從而理解(4+2)×25=4×25+2×25是相等的,即左邊表示6個25,右邊也表示6個25,所以(4+2)×25=4×25+2×25。

  2、注意區分乘法結合律與乘法分配律的特點,多進行對比練習。

  乘法結合律的特征是幾個數連乘,而乘法分配律特征是兩數的'和乘一個數或兩個積的和。在練習中(40+4)×25與(40×4)×25這種題學生特別容易出現錯誤。為了學生更好地掌握可以多進行一些對比練習。如:進行題組對比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;練習中可以提問:每組算式有什么特征和區別?符合什么運算定律的特征?應用運算定律可以使計算簡便嗎?為什么要這樣算?

  3、讓學生進行一題多解的練習,加深學生對乘法結合律與乘法分配律的理解。

  如:計算125×88;101×89你能用幾種方法?125×88①豎式計算;②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88;⑥(100+20+5)×88等等。101×89①豎式計算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。對不同的解題方法,引導學生進行對比分析,什么時候用乘法結合律簡便?什么時候用乘法分配律簡便?明確利用乘法結合律與乘法分配律進行計算的條件是不一樣的。乘法結合律適用于連乘的算式,而乘法分配律一般針對有兩種運算的算式。

《乘法分配律》教學反思2

  乘法分配律是一節概念課,是在學生已經掌握了加法運算定律以及乘法交換律和結合律的基礎上進行教學的。在五大運算定律中,是最難理解的,學生最不容易掌握的。本節課的重點是理解乘法分配律的意義,難點是利用乘法分配律進行簡便計算 。

  成功之處:

  1.本課在教學情境的設計上沒有采用課本上的`主題圖,而是選取學生熟悉的買校服情境:這學期學校要換新校服。上衣每件28元,褲子每條12元。我們班共需繳校服費多少元?學生獨立思考,同位交流,能用兩種方法解答出來,然后讓學生對比兩種算法初步讓學生感知乘法分配律的意義,即(28+12)×44=28×44+12×44。

  2.加深對乘法分配律意義的理解,讓學生不僅知道兩個數的和與一個數相乘可以寫成兩個積相加的形式,還要知道兩個積相加的形式可以寫成兩個數的和的形式。通過多種形式的練習讓學生深入理解乘法分配律的意義。

  不足之處:

  1.在總結乘法分配律時沒有把結構說的很透徹,導致學生出現在練習時有一個同學在同步學習的練習題中把連乘算成乘法分配律。

  2.學生的語言敘述不熟練,導致學生雖然會背用字母表示的式子,但是不會應用。

《乘法分配律》教學反思3

  小學數學《乘法分配律》教學反思教學乘法分配律之后,發現學生的正確率很低,特別是對乘法結合律與乘法分配律極容易混淆。針對這種情況,我認為在教學中應該注意這些問題:

  1、乘法分配律的教學既要注重它的外形結構特點,也要同時注重其內涵。

  教學中通過解決買水果濟青高速公路全長約多少千米?這一問題,結合具體的生活情景,得到了(110+90)2=1102+902這一結果。這時我們往往比較注意了等式兩邊的外形結構特點,即兩數的和乘一個數=兩個積的和。缺乏從乘法意義角度的理解。所以這里我們不僅要從解題思路的角度理解兩個算式是相等的,還要從乘法的意義的角度理解,即左邊表示200個2,右邊也表示200個2,所以(110+90)2=1102+902

  2、注意區分乘法結合律與乘法分配律的特點,多進行對比練習。

  乘法結合律的特征是幾個數連乘,而乘法分配律特征是兩數的'和乘一個數或兩個積的和。在練習中(40+4)25與(404)25這種題學生特別容易出現錯誤。為了學生更好地掌握可以多進行一些對比練習。如:進行題組對比15(84)和15(8+4);25125258和25125+258;練習中可以提問:每組算式有什么特征和區別?符合什么運算定律的特征?應用運算定律可以使計算簡便嗎?為什么要這樣算?

  3、讓學生進行一題多解的練習,經歷解題策略多樣性的過程,優化算法,加深學生對乘法結合律與乘法分配律的理解。

  如:計算12588;10189你能用幾種方法?

  12588 ①豎式計算; ②125811;③125(80+8);④125(100-12);⑤(100+25)88; ⑥(100+20+5)88等等。

  10189 ①豎式計算;②(100+1)89;③101(80+9);101(100-11);101(90-1)等。對不同的解題方法,引導學生進行對比分析,什么時候用乘法結合律簡便,什么時候用乘法分配律簡便?明確利用乘法結合律與乘法分配律進行間算的條件是不一樣的。乘法分配律適用于連乘的算式,而乘法分配律一般針對有兩種運算的算式。力爭達到用簡便算法進行計算成為學生的一種自主行為,并能根據題目的特點,靈活選擇適當的算法的目的。

  4、多練,針對典型題目多次進行練習。

  練習時注意練習量和練習時間的安排。剛開始可以天天練,過段時間以后可以過1-2天練習一次,再到1周練習一次。典型題型可選擇(40+4)25;(404)25;6325+6375;65103-653;5699+56;12588;48102;4899等。對于比較特殊的題目可間斷性練習,對優生提出掌握的要求。如3698+72;6825+68+6874,3212525等。

《乘法分配律》教學反思4

  問題的探索

  1、小組合作,培養估計意識

  師:我們先來估計一下他們大約用了多少塊瓷磚好嗎?

  生:思考并回答,只要是學生說的合理就可以

  估計的方法很多:估計一行有10塊,一共有10行,10×10=100(塊)

  估計左邊有50塊,右邊有50塊,合起來一共有100塊。

  ……

  師:那到底誰的估計最合適呢?讓我們共同來研究一下好嗎?

  2、自主探索,驗證估計的正確性

  師:請同學們用自己喜歡的方式做到練習本上。把你想到的算法都寫出來。

  先獨立思考,然后在小組內交流一下。

  生:思考、交流

  師:看到剛才同學們積極思考的樣子,老師很想知道你們是怎么想的?誰想告訴老師和同學們?

  提醒其他學生認真傾聽,同時對同伴的回答進行補充。

  可能出現的結果:(1)(6+4)×9=10×9=90(塊)

  (2)6×9+4×9=54+36=90(塊)

  (3)6×9=54(塊)4×9=36(塊)54+36=90(塊)

  學生還有可能出現其它的不同的思考方法,但只要有理由老師都要進行肯定。

  學生思考出的算式可以讓學生自己寫到黑板上,然后老師根據自己的需要邊總結邊調整出如下的`板書:

  (1)(6+4)×9=10×9=90(塊)

  (2)6×9+4×9=54+36=90(塊

  師:通過計算我們可以看出工人師傅一共貼了90塊瓷磚,那誰估計的答案最合適呢?掌聲鼓勵下自己。

  3、分析比較

  師:仔細觀察兩種方法有什么不同

  生:第一種方法是先求出一行有多少塊,再求一共有多少塊;第二種方法是先求出一面墻用了多少塊,再求出另一面墻用了多少塊,最后求一共用了多少塊。

  4、結論:

  師:我們來比較一下這兩個算式的結果如何?

  生:相等

  師:用什么符號連接(結果相等,用等號連接)

  (6+4)×9=6×9+4×9,(板書)

  教學反思:本節課的重點和難點是對規律的探索,在得出算式(6+4)×9=6×9+4×9以后,我沒有用例子讓學生很快的歸納出一個一般的結論,而是引導學生觀察、發現、猜想、舉例驗證、歸納概括等,讓學生把靜態的知識結論轉化成動態的探索對象,使認知任務本身有了一種誘發學生較高思維水平的潛力,給規律的探索過程注入了生命力。

《乘法分配律》教學反思5

  乘法分配律的教學是在學生學習了加法交換律、加法結合律及法交換律、乘法結合律的基礎上教學的。乘法分配律也是學習這幾個定律中的難點。故而,對于乘法分配律的教學,我沒有把重點放在數學語言的表達上,而是把重點放在讓學生通過多種方法的計算去完整地感知,對所列算式進行觀察、比較和歸納,大膽提出自己的猜想并舉例進行驗證……

  1、關注學生已有的知識經驗。以學生身邊熟悉的`情境為教學的切入點,激發學生主動學習的需要,為學生創設了與生活環境、知識背景密切相關的感興趣的學習情境――為參加“陽光伙伴”的32 名運動員購買統一服裝。通過兩種算式的比較,喚醒了學生已有的知識經驗,使學生初步感知乘法分配律。

  2、展示知識的發生過程,引導學生積極主動探究。先讓學生根據提供的問題,用不同的方法解決,從而發現(35+25 )×32=35 ×32+25 ×32 這個等式,讓學生觀察,初步感知“乘法分配律”。再根據“老師還有其他選擇嗎”?這一問題,再次引出(35+25 )×32=35 ×32+25 ×32 ,最后,要求學生照樣子寫出幾組這樣的等式,引導學生再觀察,讓學生說明自己發現的規律。這樣學生經歷了“觀察、初步發現、舉例驗證、再觀察、發現規律、概括歸納”這樣一個知識形成過程。不僅讓學生獲得了數學基礎知識和基本技能,而且培養學生主動探究、發現知識的能力。

  3、教完之后,感覺在練習的設計上,還太拘禮與課本,雖然引導學生發現了定律,但沒有相配套的練習使學生對所學知識加以鞏固、應用。對學生掌握知識的情況不能及時反饋,對如何用活、用好教材還需進行進一步的思考。

  

《乘法分配律》教學反思6

  “乘法分配律”的學習是在學習了乘法交換律和乘法結合律之后進行的,對于乘法分配律的理解和應用上都比前兩個運算定律更有難度,學生在新課學習和知識的應用的過程中思路還比較清晰,但是在作業的過程中出現的好多問題,讓人感覺孩子并沒有對定律有真正意義上的理解。如:(40+4)×25,有時,只用40×25,后面只加上4就行了,還有的把這道題目改成了連乘題,根據孩子出現的問題和練習中出現的困惑,我認真的設計的這節練習課。

  第一,理清思路,,建構完整的知識體系。在本節課中,我和學生們一起回顧了乘法的幾種運算定律,比較每種運算定律的字母公式,來區分乘法交換律、乘法結合律和乘法分配律之間的`外形結構特點,引導學生發現,乘法結合律是幾個數連乘,而乘法分配律是兩數的和乘一個數或者是兩個積的和.從運算符號上我們很快就可以找到它們的不同。乘法交換律和乘法結合律都只有乘號,而乘法分配律有不同級的兩種運算符號。

  第二,優化練習題,實行精練。針對學生在乘法分配律學習后在理解上的困難,及乘法分配律在練習形式上的多變,我找出課本、課堂作業本以及一些課外輔導資料上的乘法分配律的計算題,把他們進行概括總結,把不同類型的乘法分配律的方法進行練習,講解。讓學生對不同的乘法分配律的解決方法都進行嘗試,幫助理解,加深記憶。

  第三,一題多法。例如25×44,學生在利用乘法分配律拆分其中一個數據的時候,有多種方法,有的學生把25拆成20+5,有的是拆了40+4,還有的把25×44轉化成25×4×11,這些方法都可以,讓學生分辨出每一種方法所運用的運算定律,從而加深學生對知識的認識和理解,在此基礎上,選出最佳方案。

  乘法分配律的練習實在是多種多樣,變幻無窮,要想更好的掌握,關鍵還是要理解,需多練.

《乘法分配律》教學反思7

  《探索與發現(三)乘法分配律》教學反思

  東新四小學 王唯

  教學內容:

  小學四年級數學(上)《探索與發現(三)》乘法分配律》教材第48頁

  教學目標:

  1、經歷探索的過程,發現乘法分配律,并能用字母表示。

  2、會用乘法分配律進行一些簡便計算。

  教學重點:理解乘法分配律的特點。

  教學難點:乘法分配律的正確應用。

  教學過程:

  一、復習回顧

  (出示課件1)計算

  35×2×5=35×(2×)

  (60×25)×4=65×(×4)

  (125×5)×8=(125×)×5

  (3×4)×5 × 6=(×)×(×)

  師:上節課,經過同學們的探索,我們發現了乘法交換律和結合律,并會應用這些定律進行簡便計算,今天咱們繼續探索,看看我們又會發現什么規律。讓我們一起走上探索之路。

  二、探究發現

  (出現課件2)

  師:大家看,工人叔叔正在貼瓷磚呢,看到這幅圖,你發現了哪些數學信息?

  生:我發現有兩個叔叔在貼瓷磚

  生:我發現一個叔叔貼了4列,每列貼9塊,另一個叔叔貼了6列,每列貼了9塊。

  師:你最想知道什么問題?

  生:我想知道工人叔叔一共貼了多少塊瓷磚?(按鼠標出示問題) 師:你能估計出工人叔叔一共貼了多少塊瓷磚嗎?

  生:我估計大約有100塊瓷磚

  生:我估計大約有90塊瓷磚。

  師:請同學們用自己喜歡的方法來計算瓷磚究竟有多少塊。(學生做,小組討論,教師巡視)

  師:誰來向大家介紹一下自己的做法?

  生:6×9+4×9(板書)

  =54+36

  =90

  分別算出正面和側面貼的塊數,再相加,就是貼的總塊數。

  生:(6+4)×9(板書)

  = 10×9

  =90(塊)

  因為每列都是9塊,所以我先算出一共有多少列,再用列數去乘每列的塊數,就是一共貼瓷磚的塊數。

  師:同學們的計算方法都很好,請同學們仔細觀察兩種算法,你能發現什么?

  生:我發現計算方法不同,但結果卻是一樣的.。

  6×9+4×9 = (6+4)×9(板書)

  師:請同學們仔細觀察上面兩道算式的特點,你能再舉一些這樣類似的例子嗎?

  (學生舉例,教師板書)

  師:這幾們同學舉的例子符合要求嗎?請在小組中驗證一下。 (小組匯報)

  小組1:符合要求,因為每組中兩個算式都是相等的。

  小組2:在每組的兩個算式中,一個是兩個數的和去乘一個數,另一個是用這兩個數分別是去乘同一個數,再相加,符合要求。

  (板書用=連接算式)

  師:比較等號左右兩邊的算式,從它們的特點和結果相等中你能發現什么規律,小組再討論一下。

  小組1:我們小組發現,只要符合上面題目要求的算式,結果都是一樣的。

  小組2:我們小組發現,兩個不同的數分別去和同一個數相乘,然后再相加,可以先把這兩個數相加再一起去乘第三個數,結果不變。 結論(課件2):師:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。這叫做 乘 法 分 配 律。它是我們學習的關于乘法的第三個定律。

  師:大家齊讀一遍。

  師:和同桌說一說自己對乘法分配律的理解。

  師:上節課我們學習了用字母來表示乘法交換律和結合律,現在你能用字母的形式表示出乘法分配律嗎?用a,b,c分別表示這三個數,試著寫一寫吧。

  (a+b)×c=a×c+b×c

  師:這叫做乘法分配律

  三、鞏固練習:

  1、計算

  (80+4)×25 34×72+34×28

  師:觀察算式特點,看是否符合要求,能否應用乘法分配律使計算簡便。

  2、判斷正誤

  ( 25 + 7 )×4 = 25 ×4 ×7×4 ( )

  35×9 + 35

  = 35×( 9 + 1 )

  = 350 - - - - ( )

  3、填一填

  (12+40)×3=× 3 +×3

  15×(40 + 8) = 15×+ 15×

  78×20+22×20=(+ )×20

  四、總結

  師:說說這節課你有什么收獲?

  師:今天同學們通過自己的探索,發現了乘法分配律,你們真的很棒。乘法分配律是一條很重要的運算定律。應用乘法分配律既能使一些計算簡便,也能幫助我們解決生活中的一些數學問題,在我們的生活和學習中應用非常廣泛。同學們要在理解的基礎上牢牢記住它,希望它永遠成為你的好朋友,伴你生活、成長。

  [板書設計]

  探索與發現(三)

  -----乘法分配律

  (a+b)×c=a×c+b×c

  6×9+4×9 =(6+4)×9

  (40+4)×25 = 40×25+4×25

  (64+36)×42 = 42×64+42×36

《乘法分配律》教學反思8

  乘法分配律是在學生學習了加法交換律、加法結合律及乘法交換律、乘法結合律的基礎上教學的。乘法分配律也是學生較難理解與敘述的定律。如何教學能使學生較好的理解乘法分配律的內涵,并能正確的運用定律進行簡便運算呢?我做了一下幾點嘗試。

  一、創設師生競賽,激發學習欲望。

  上課教師先出示:(1)8×(125+11) (2)(100+1)×23

  (3 )648×5+352×5

  老師和同學們做一個比賽,王老師口算,你們用計算器算,看看誰能獲。

  結果教師又快又對,學生都很奇怪,教師順勢導入:同學們都特別想知道在比賽過程中,學生用計算器都沒有老師口算得快的原因嗎?是因為老師又運用了乘法的一個法寶,知道了乘法的又一個定律可以使運算簡便,你們想知道嗎?今天我們就來探究其中的奧秘。

  這樣的導入讓學生充滿了求知的欲望,激發了學習的熱情。

  二、設計思考問題,學生自主探究。

  出示例題后,學生獨立解答,然后教師出示思考問題,學生自主探究。

  討論:

  1、這兩種方法有什么不同?兩個算式的結果如何?用什么符號連接?

  2、那么等號連接的這兩個算式有什么特點和聯系呢?請同學們帶著老師給出的三個問題展開討論。(課件出示問題)生A:我發現左邊括號外的那個數,寫到右邊都要乘兩次。

  生B:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。

  整個教學過程通過學生觀察、比較、分析理解乘法分配律的含義,教師引導學生概括出乘法分配律的內容。

  三、練習有坡度,前后有呼應。

  在本課的練習設計上,我力求有針對性,有坡度,同時也注意知識的延伸。練習的形式多樣,課本上的填空題解決以后,設計了判斷題和練習題,把學生易出錯的問題提前預設好,而且通過練習讓學生明白乘法分配律也可以兩個數的差,也可以是三個數的和,使學生對乘法分配律的.內容得到進一步完整,也為后面利用乘法分配律進行簡算打下伏筆。為了讓學生初步感受乘法分配律能使一些計算簡便,我特意把開始和老師比賽的題目讓學生運用今天所學知識進行計算,學生非常有興趣,在練習中培養了學生分析、推理、概括的思維能力。

  總之,在本堂課中新的教學理念有所體現,是一節本色的數學課堂。但在具體的操作中還缺乏成熟的思考,自主探究環節對問題的設計不夠簡潔,還可以再做斟酌。實際分配律的揭示過程與教案設計順序有些出入,感覺效果沒有預想的好,上課時對于教案的熟悉程度還有待加強。

《乘法分配律》教學反思9

  由于本學期的時間比較短,所以自己在講四年級數學課的時候,不免有些匆匆。為了保持好進度,習題處理稍顯落后。在近一段時間對孩子們的“運用乘法分配律進行簡算”的檢查來看,效果不是很好。我發現這是好多學生不容易掌握的,很容易和乘法的結合律弄混淆。所以,我就想搞清楚,到底孩子們是哪里沒有搞清楚?就在課下又提問了幾個老在分配率出錯的孩子運算公式,發現有的孩子能結結巴巴地把公式背出來,有的是比較順利地進行背誦。那么,會順利背誦公式的孩子們到底是哪里不會呢?

  帶著這個問題,我是旁敲側擊地進行“盤問”——我拿著生活中的2.5元的冰淇淋打比方,問問買23個和28個需要多少錢?孩子們算的很快。他們知道把23分解成20加上3,還有部分學生28×25=(20+8)×25,我當時一項,哎呦不錯,還不是完全不會啊。看來,孩子們在真正的生活情境中還是有一大部分人會自覺的用乘法分配律的。可是,真正運用到教學中,孩子們確實很難達到自覺地運用分配律去計算,特別是一些變式就更加的困難了。

  在批改作業的時候,有三四個孩子的下面的'結果卻是讓我大跌眼鏡——28×25=(20+8)×25=20×8×25,當時我就在想,壞了,孩子們把這兩個公示記混淆了。果不其然,我給他們出了一道題72×25=(8×9)×25=8×25+9×25,我在給學生們一一講解的時候,我就在反思,這一類問題出現是因為孩子們沒有自覺觀察算式特點的習慣。他們只是急匆匆的完成自己的作業,對于此類的計算的目的單純得很就是只要得到答案,自己就忽略了計算的過程。

  后來我就想,我去時應該多出一點類似于(80+8)×25,72×25,125×32×25的這些題對孩子們進行相應的練習,這樣來提高孩子們對公式概念的認識。我可以讓孩子們先學會一道題的做法,在慢慢來進行相應的引導。并且出一些題目要求孩子們使用分配律或者結合律等等,對孩子們進行鞏固。讓孩子們學會多種方法解決一到數學題,把握“湊整”這個解題關鍵,正確、合理地使用運算定律,就是正確的。做到真正的學以致用!

《乘法分配律》教學反思10

  乘法分配律是教學的難點也是重點。這節課采用從生活中的問題入手,利用學生感興趣的具體情境展開。這節課我力圖將教學生學會知識,變為指導學生會學知識,將重視結論的記憶變為重視學生獲取結論的體驗和感悟,將模仿式的學習變為探究式的學習。學生經歷了“觀察、初步發現、舉例驗證、再觀察、發現規律、概括歸納”這樣一個知識形成過程。這樣不僅讓學生獲得了數學基礎知識和基本技能,而且更能培養學生主動探究、發現知識的能力。回顧整個教學過程,這節課的亮點體現在以下幾個方面:

  一、從身邊引入熟悉的生活問題,激趣探究

  我們在教學中要為學生創設大量生動、具體、鮮活的生活情境,讓學生感到數學就是從身邊的生活中來的,激發學生學習的熱情。在教學時,我先創設情景,提出問題:“一共有多少名學生參加這次植樹活動?”。讓學生根據提供的條件,用不同的方法解決,從而發現(4+2)×25=4×25+2×25這個等式。然后請學生觀察,這個等式兩邊的運算順序,使學生初步感知“乘法分配律”。再讓學生“觀察這個等式左右兩邊的不同之處”,再次感知“乘法分配律”。我利用情景,讓學生充分的感知“乘法分配律”,為后來“乘法分配律”的探究提供了有力的保障。

  二、為學生提供了自己獨立探究的機會

  數學教學應該是數學教學的活動。傳統的教學活動往往只重視結論的記憶,而這節課我把學生的活動定位在感悟和體驗上,引導學生用數學思維方式去發現,去探索。尤其是在學生初步感悟到兩種算法相等關系的基礎上,繼續為學生創造一個思考的情景。我要求學生觀察得到的兩個等式,提出“你有什么發現?”。此時學生對“乘法分配律”已有了自己的一點點感知,我馬上要求學生模仿等式,自己再寫幾個類似的等式。使學生自己的模仿中,自然而然地完成猜測與驗證,形成比較“模糊”的認識。

  三、為學生的學習方式的`轉變創設了條件

  模仿學習,學生“知其然,而不知其所以然”,知識容易遺忘,而且不能靈活應用。改變學生的學習方式,讓學生進行探索性的學習,不能是一句空話。在這節課上,我抓住學生的已有感知,立刻提出“觀察這一組等式,你能發現其中的奧秘嗎?”。這樣,給學生提供了豐富的感知材料和具有挑戰性的研究材料,提供猜測與驗證,辨析與交流的空間,把學習的主動權力還給學生。學生的學習熱情高了,自然激起了探究的火花。學生的學習方式不再是單一的、枯燥的,整個教學過程都采用了讓學生觀察思考、自主探究、合作交流的學習方式。我想:只有改變學習方式,才能提高學生發現問題、分析問題和解決問題的能力。

  

《乘法分配律》教學反思11

  —乘法分配律教學設計與反思

  設計說明

  當我給學生講到練習四第七題的時候,覺得這道題目可以開發一下用來上乘法分配律,讓學生自己制作兩個長不一樣,寬一樣的長方形,通過動手操作來獲得求面積和的方法,自然的引出乘法分配律。然后看了下這節課的課后練習,里面有乘法分配律的逆向運用的題目,在其后56頁的簡便運算中也能用到逆向運用的知識,于是就把這個運用單獨列出來作為一個知識層次,聯想到我們以前還學習過兩數之和乘另一個數等于這兩個數分別去乘第三個數再想減的知識,于是就去習題中找有沒有類似的題目,在55頁第五題中求四年級比五年級多多少人時,如果用乘法分配律的延伸知識可以使計算簡便,又看到練習五的三、四兩題,就必須要知道這個知識才好解決,于是就把乘法分配律的延伸作為第三個層次的教學了,按照這個思路設計了這節課,實際上下來的效果不錯,既調動了學生的學習熱情和主動性,又培養了學生自主探索,發現并總結規律的能力。 教學設計

  教學內容

  蘇教版《義務教育課程標準實驗教科書數學》四年級(下冊)第54~55頁。 教學目標

  1、學生在解決實際問題的過程中發現并理解乘法分配律,并能運用乘法分配律使一些運算簡便。

  2、學生在發現規律的過程中,發展比較、分析、抽象和概括能力,增強用符號表

  達數學規律的意識,進一步體會數學與生活的聯系。

  3、學生能聯系實際,主動參與探索、發現和概括規律的學習活動,感受數學規律的確定性和普遍適用性,獲得發現數學規律的愉悅感和成功感,增強學習的興趣和自信。

  教學過程

  一:創設情境導入

  提問:長方形的面積怎樣求?

  指明回答

  這里有長分別是10厘米和6厘米,寬都是4厘米的兩個長方形紙片,請同學們自己動手把它們組成一個新的長方形。(課件出示題目)

  學生動手操作

  (課件出示兩個長方形組合的動畫)

  二:自主探索,交流合作

  1、交流算法,初步感知

  提問:請同學們自己求一下新長方形的面積。

  教師巡視,觀察學生不同的解法

  反饋:請學生說一說自己的解法,應當有兩種解法,如果學生說不出來應加以引導

  (課件出示兩種解法)

  談話:兩個算式解決的都是同一個問題,它們計算的結果也相同,能把它們寫成一個算式嗎?

  學生自己寫一寫,請學生說一說,教師相機板書。

  2、比較分析,深入體會

  提問:算式左右兩邊有什么相同和不同之處呢?小組內交流。

  反饋交流,在學生發言的基礎上,教師根據情況相機引導:等號左邊先算什么,再算什么,右邊先算什么,再算什么呢?使學生明確:等號左邊是10加6的和乘4,等號右邊是10乘4的積加6乘4的積。

  設疑:是不是類似這樣的算式都具有這樣的性質呢?學生舉例驗證。

  組織交流反饋。可適當的選取一些數字很大的和很小的例子以及有乘數是0的例子等特殊情況。

  3、規律符號化,揭示規律

  提問:像這樣的算式,寫的完嗎?

  我們可以嘗試用自己的方法去表達這個規律,同學們自己試著在小組內寫一寫,說一說。

  反饋引導學生用不同的方式來表達規律。

  小結揭示:兩個數的和乘另一個數等于這兩個數分別乘另外的數再相加。用字母表示:(a+b)×c=a×c+b×c,(板書并課件出示)這就是我們今天要學的'乘法分配律。(板書課題)

  三:實踐運用,初步理解。

  1、想想做做1

  學生自主完成,組織交流。

  第二小題教師板書,并啟發學生從算式所表示的意義角度說一說對這個算式的 理解。并在板書上用箭頭標明左邊12出現了2次,右邊在括號外面的數字就是

  12.并向學生介紹這可以稱作是乘法分配律的逆向運用(板書)

  2、想想做做2

  自主完成,組織交流。

  第三小題引導學生從乘法意義角度去理解。并使學生明白74×1可以看做1個

  74,也就是74.

  第四小題要和想想做做題1的第二小題做對比。

  四:拓展延伸,內化新知

  再次出示兩個長方形紙片,提問:如何比較這兩個長方形的大小

  學生反饋,引導說出可以重疊比較。學生動手實踐

  再問:那么大長方形比小長方形大的面積是那一塊?

  讓學生自己動手摸一摸,課件出示重疊動畫,并把多余部分突出顯示。 提問:如何求多出來的面積呢?請同學們自己列式解答。

  學生若想不到可以用大長方形面積減去小長方形的面積,教師可以適當的提 示。

  學生反饋,交流。課件出示兩種解法。

  談話:這兩個算式結果相同,解決的也是同一個問題,可以把它們寫成一個算 式,課件出示并板書。

  再問:這個算式左右兩邊有什么聯系,引導學生說出:兩個數的差乘另一個數 等于這兩個數分別與第三個數乘,再相減。

  談話:這個規律用字母如何表示呢?自己試著寫寫看。

  學生反饋,教師板書并課件出示。說明這個可以看做是乘法分配律的延伸。 五:解決實際問題,內化重點難點。

  想想做做題5

  課件出示,學生讀題。

  問題一,要求學生列出不同的算式解答,并通過討論引導學生適當的解釋兩個 算式之間的聯系。

  問題二,鼓勵學生列出不同的算式解答,并引導學生適當的解釋兩個算式之間 的聯系,加強學生對

  乘法分配律延伸的理解與內化。

  反思:

  這節課我是分三個層次來教學。

  第一個層次是乘法分配律的教學,學生通過運用不同的方法求新長方形的面積來體會規律,感知規律的合理性。這個環節強調學生的自主探索和動手觀察能力。 第二個層次是乘法分配律的逆向運用,通過想想做做題1的第二小題的教學,引導學生明確可以從乘法的意義角度來理解算式,并體會乘法分配律的逆向運用。

  第三個層次是乘法分配律的延伸,通過讓學生動手操作,知道如何比較兩個長方形的大小,并通過動手指一指,知道多出的面積就是兩者相差的面積。在學生自己動手求解的過程中,初步的體會到諸如:(10-6)×4=10×4-6×4也有類似的規律,并嘗試寫出用字母如何表達。

  最后通過解決實際問題的形式,把發現的規律加以運用,從2個小題的解答中初步體會乘法分配律和乘法分配律延伸的應用。

《乘法分配律》教學反思12

  乘法分配律是繼乘法交換律、乘法結合律之后的新的運算定律,在算術理論中又叫乘法對加法的分配性質,由于它不同于乘法交換律和結合律是單一的運算。從某種程度上來說,其抽象程度要高一些,因此,對學生而言,難度偏大,如何使學生掌握得更好,記得更牢?我想學生自己獲得的知識要比灌輸得來的記得更牢。

  因此我在一開始設計了一個購物的情境,讓學生在一個寬松愉悅的環境中,走進生活,開始學習新知。在教學過程中有坡度的讓學生在不斷的感悟、體驗中理乘法分配律,從而自己概括出乘法分配律。我是這樣設計:

  一、讓學生從生活實例去理解乘法分配律

  一共25個小組參加植樹活動,每組里8人負責挖坑和種樹,4人負責抬水和澆樹。重組教材,改變每組的人數,由(4+2)個25,變為(8+6)個25更能凸顯出應用乘法分配律后帶來的方便,也為乘法分配律的應用打下伏筆和基礎。并且把“挖坑、種樹”“抬水、澆樹”更改為“挖坑和種樹”“抬水和澆樹”減少了文字對學生理解帶來的困難。

  通過引入解決問題讓學生得到兩個算式。先捉其意義,再突顯其表現的形式。

  如(4+2)×25其意義就是6個25與4×25+2×25所表示的也是4個25再加2個25也就是6個25,它們的表示意義一樣。因此得數也一樣故成等量關系。然后觀察它們之們的形式變化特點,兩個數的和乘以一個數可以寫成兩個積相加的形式,再捉住因數的特點進行分析。在此基礎上,我并沒有急于讓學生說出規律,而是繼續為學生提供具有挑戰性的研究機會

  借助對同一實際問題的不同解決方法讓學生體會乘法分配律的合理性。這是生活中遇到過的,學生能夠理解兩個算式表達的意思,也能順利地解決兩個算式相等的'問題。

  二、突破乘法分配律的教學難點

  讓學生親歷規律探索形成過程。對于探索簡潔分配律的過程價值,絲毫不低于知識的掌握價值。既然是“規律定律”,就是讓學生親歷規律形成的科學過程設計中,不著痕跡的讓學生不斷觀察、比較、猜想、驗證,從而概括出乘法分配律,在探索、歸納過程中,滲透著從特殊到一般,又由一般到特殊的數學思想和方法。

  相對于乘法運算中的其他規律而言,乘法分配律的結構是最復雜的,等式變形的能力是教學的難點。為了突破這個教學難點,從生活中的實際問題出發,開放引入的情境,一共25個小組參加植樹活動,每組里人負責,人負責。一共有多少同學參加這次植樹活動?

  學生主動去設計、解決,調動學生的積極性。讓學生根據自己的想法,選擇自己喜歡的方案,開放給學生,發揮學生的主體性,通過去發現、猜想、質疑、感悟、調整、驗證、完善,驗證其內在的規律,從而概括出乘法分配律。讓學生能自由地利用自己的知識經驗、思維方式去嘗試解決問題,在探究這一系列的等式有什么共同點的活動中。

  在學生已有的知識經驗的基礎上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規律。在尋找規律的過程中,有同學是橫向觀察,也有同學是縱向觀察,目的是讓學生從自己的數學現實出發,去嘗試解決問題,又能使不同思維水平的學生得到相應的滿足,獲得相應的成功體驗。

  當然,對乘法分配律的意義還需做到更式形結合解釋,那就更有利于模型的建立。

《乘法分配律》教學反思13

  教材分析:

  乘法分配律是北師大版小學數學四年級上冊第三單元最后一節的教學內容。本課是在學生已經學習掌握了乘法交換律、結合律,并能初步應用這些定律進行一些簡便計算的基礎上進行學習的。乘法分配律是本單元教學的一個重點,也是本單元內容的難點,教材是按照發現問題--提出假設--舉例驗證--歸納結論等層次進行的。然而乘法分配律又不是單一的乘法運算,還涉及到加法的運算,是學生學習的難點。因此本節課不僅使學生學會什么是乘法分配律,更要讓學生經歷探索規律的過程,進而培養學生的分析、推理、抽象、概括的思維能力。

  1.上課一開始,我創造性地使用教材,創設了訂校服的教學情境,使學生解決非常熟悉的生活問題、

  2.在此基礎上,我并沒有急于讓學生說出規律,而是繼續為學生提供具有挑戰性的研究機會:“請你再舉出一些符合自己心中規律的等式”,繼續讓學生觀察、思考、猜想,然后交流、分析、探討,感悟到等式的特點,驗證其內在的規律,從而概括出乘法分配律。

  3.本節課有一定的亮點,但其中出現了不少問題:學生參與的'積極性沒有預想中那么高。可能與我相對缺乏激勵性語言有關。也有可能今天的題材學生不太感興趣。

  4.以后注意,學生不感興趣的材料,教師應該想辦法使呈現的這個材料變得能讓學生感興趣

  教學反思:

  乘法分配律是第三單元的一個難點。在理解、掌握和運用上都有一定難度。因此如何上好這一課,讓學生真正地理解乘法分配律,并在理解的基礎上運用好它?我覺得要注重形式上的認識,更要注重意義上的理解。因為單從形式上去記住乘法分配律是有局限性的,以后在運用乘法分配律的時候,遇到一些變式如:99×24+24會變得難以解決。注重意義的理解,能讓學生從更高的層面上去理解乘法分配律,那么將來無論形式上怎么變化,學生都能輕松運用乘法分配律。

  北師大版的教材注重學生的探索活動,在探索中讓學生自己去發現的規律,才能讓他們真正地理解。本課是“探索與發現”的第三節課了,學生已經有了一定的探索能力。因此本課的設計完全圍繞著學生的自主活動在進行。

  總體上我的教學思路是由具體——抽象——具體。在學生已有的知識經驗的基礎上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規律。在學習中大膽放手,把學生放在主動探索知識規律的主體位置上,讓學生能自由地利用自己的知識經驗、思維方式去發現規律,驗證規律,表示規律,歸納規律,應用規律。

  在教學過程中,也有不盡人意的地方,如雖然本節課在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上還不夠,因此在歸納乘法分配律的內容時,學生難以完整地總結出乘法分配律,另外還有部分學困生對乘法分配律不太理解,運用時問題較多等。

《乘法分配律》教學反思14

  乘法分配律是小學四年級學生比較難理解與敘述的定律。如何使學生掌握得更好,記得更牢?我想學生自己獲得的知識要比灌輸得來的記得更牢。因此我在一開始設計了一個購物的情境,讓學生在一個寬松愉悅的環境中,走進生活,開始學習新知。

  教學內容:教材第54~55頁例題,完成“做一做”。

  教學目標

  1、讓學生在解決實際問題的過程中發現乘法分配律;通過計算說理,理解乘法分配律。

  2、讓學生在發現規律的過程中,發展比較、分析、抽象和概括的能力,增強用符號表達數學規律的意識,進一步體會數學與生活的聯系。

  3、培養學生聯系現實問題主動參與探索、發現和概括規律的學習態度,感受數學規律的確定性和普遍適用性,獲得發現數學規律的愉悅感和成功

  感,增強學習的興趣和自信。

  教學重、難點:

  發現并理解乘法分配律。

  教具準備:

  多媒體課件一套。

  教學過程

  一、創設問題情境

  談話:這學期,我們學校鼓號隊又增加了新成員,輔導員柳老師正在為他們準備服裝呢!(課件出示商店場景)

  二、展開探索過程

  1、初步感知。

  提問:仔細觀察,從圖中你獲得了哪些信息?

  學生列式后交流反饋解題思路,并借助圖形加深學生對兩種解題思路的體會。

  提問:猜一猜,這兩種方法的計算結果會怎么樣?

  計算驗證:算一算,來證明你的猜想是正確的。

  板書等式:(30+25)x4=30x4+25x4

  2、類比展開。

  (1)出示圖形,讓學生說說你想到了什么?你能用兩種方法求出6套衣服一共要付多少元嗎?板書:(30+25)x6=30x6+25x6

  (2)除了把長方形看成上衣,梯形看成褲子,把它們看成6套衣服,還可以看成什么?

  要求6套課桌椅多少元,你準備怎么解決?

  板書:(100+60)x6=100x6+60x6

  3、體驗感悟。

  (1)類似這樣的等式還有嗎?你能寫出第4組嗎?

  學生舉例后,挑3組板書。

  (2)提問:這3組算式相等嗎?怎么證明?(計算、乘法的意義)

  同桌互相檢查剛才寫的算式是否相等。

  (3)交流:介紹你寫成功的經驗

  引導:你是怎么根據左邊的算式寫出右邊的算式的?

  4、提示規律。

  (1)提問:像這樣的等式能寫完嗎?

  (2)用自己喜歡的方式表達所發現的規律,在小組里交流。展示。

  板書:(a+b)xc=axc+bxc

  (3)板書:乘法分配律

  讓學生用自己的語言說說這個字母式子表示什么,師小結。

  三、鞏固內化

  1、在□里填上合適的數,在○里填上運算符號。

  (42+35)×2=42×□+35×□

  27×12+43×12=(27+□)×□

  15×26+15×14=□○(□○□)

  學生獨立填寫,指名報答案,全班共同校對。指出后兩題是乘法分配律的逆向應用。

  出示:72x(30+6)= 齊說答案。

  出示:(25-12)x4= 可能等于什么?怎樣才能確認?你能聯想到什么?小結

  2、橫著看,在得數相同的.兩個算式后面畫“√”。

  (48+52)×13 48×13+52×13 □

  40×5+2×5 5×(40+2) □

  75×(19+1) 75×19+75 □

  40×50+50×90 40×(50+90) □

  27×(16+30) 27×16+30 □

  獨立完成,小組討論為什么有的是相同的,有的是不相同的。指名報答案,說說第三組兩道算式為什么是相等的?第四組的兩道算式為什么不相等?怎樣改一下能使它們相等?

  出示打“√”的算式,如果讓你計算的話,你更愿意計算哪邊的式子呢?為什么?小結:有時應用乘法分配律可以使計算簡便。

  四、總結回顧

  通過今天這節課的學習,你有什么收獲?

  五、布置作業

  1、必做題:想想做做第5題。

  2、選做題:如果把乘法分配律中“兩個數的和”換成“3個數的和”、“4個數的和”或“更多個數的和”,結果還會不會不變?用合適的方試著進行驗證。

《乘法分配律》教學反思15

  1、情境的創設激發了學生的計算熱情。

  讓學生在生動具體的情境中學習數學,這是新課標倡導的新理念。我聯系學生的生活實際,創設了學生熟悉的購買家具的場景,配上我生動的語言敘述,一下子就把學生代入到了一個有數學味的問題情境中,吸引了所有學生的注意。緊接著的問題如果你是小紅,你想買什么家具呢?根據小紅家的需要,你們能提出哪些數學問題?更是激發了學生的思維,學生個個積極動腦,躍躍欲試。在學生充分提出各種問題的`基礎上,我選擇了有代表性的一個問題讓學生獨立解決,極大地激發了學生的計算熱情。這一環節的教學,讓學生經歷了因用而算、以算激用的過程,將算與用緊密結合。

  2、多層的設計有利于學生數學模型的建立。

  首先讓學生通過獨立計算,交流計算方法,敘述計算過程等一系列的筆算乘法的技能訓練,形成一定的算理。然后通過比較124和2132這兩題,它們最大的區別是什么?在乘的時候,有什么不同呢?如果是四位數、五位數乘一位數,你認為該怎么乘呢?這兩個問題的討論、交流,引導學生進行整理反思,讓學生能通過兩位數乘一位數遷移到三位數乘一位數,進而自然聯想到四位數、五位數乘一位數的計算方法其實都是一樣的,從而幫助學生將零散的知識串起來,有利于學生數學模型的建立。

  需要改進的地方是:在學生探索出筆算方法后,我因為擔心學生沒有聽懂,怕學生做錯,說錯,故而引導太細,學生的學習主動性調動的不夠。如果我能充分相信學生,大膽放手,讓學生獨立地去想,去做,去說,相信學生的。表現會更出色。

【《乘法分配律》教學反思】相關文章:

乘法分配律教學反思10-28

《乘法分配律》教學反思03-14

《乘法分配律》說課稿05-17

乘法分配律說課稿05-15

乘法分配律說課稿01-02

《乘法分配律》說課稿02-09

乘法教學反思10-30

四年級數學乘法分配律教學反思03-12

筆算乘法教學反思10-10

久久一级2021视频,久久人成免费视频,欧美国产亚洲卡通综合,久久综合亚洲一区二区三区色
日本精品自产拍在线观看中文 | 婷婷丁香五月天在线免费视频 | 日本一本之道高清不卡免 | 亚洲人成网站精品片在线观看 | 亚洲激情不卡视频 | 日韩欧美国产手机在线观看 |