- 相關(guān)推薦
作為一名為他人授業(yè)解惑的教育工作者,就有可能用到說課稿,說課稿有助于順利而有效地開展教學(xué)活動(dòng)。那么應(yīng)當(dāng)如何寫說課稿呢?下面是小編幫大家整理的《二面角》說課稿,希望能夠幫助到大家。
《二面角》說課稿1
一、教材分析
1、教材地位和作用:二面角是我們?nèi)粘I钪薪?jīng)常見到的、很普通的一個(gè)空間圖形。“二面角”是人教版《數(shù)學(xué)》第二冊(cè)(下B)中9.7的內(nèi)容。它是在學(xué)生學(xué)過兩條異面直線所成的角、直線和平面所成角、又要重點(diǎn)研究的一種空間的角,它是為了研究兩個(gè)平面的垂直而提出的一個(gè)概念,也是學(xué)生進(jìn)一步研究多面體的基礎(chǔ)。因此,它起著承上啟下的作用。通過本節(jié)課的學(xué)習(xí)還對(duì)學(xué)生系統(tǒng)地掌握直線和平面的知識(shí)乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。
2、教學(xué)目標(biāo):
知識(shí)目標(biāo):(1)正確理解二面角及其平面角的概念,并能初步運(yùn)用它們解決實(shí)際問題。
(2)進(jìn)一步培養(yǎng)學(xué)生把空間問題轉(zhuǎn)化為平面問題的化歸思想。
能力目標(biāo):(1)突出對(duì)類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學(xué)生的創(chuàng)新能力。(2)通過對(duì)圖形的觀察、分析、比較和操作來強(qiáng)化學(xué)生的動(dòng)手操作能力。
德育目標(biāo):(1)使學(xué)生認(rèn)識(shí)到數(shù)學(xué)知識(shí)來自實(shí)踐,并服務(wù)于實(shí)踐,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)(2)通過揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進(jìn)一步培養(yǎng)學(xué)生聯(lián)系的辯證唯物主義觀點(diǎn)。
情感目標(biāo):在平等的教學(xué)氛圍中,通過學(xué)生之間、師生之間的交流、合作和評(píng)價(jià),拉近學(xué)生之間、師生之間的情感距離。
3、重點(diǎn)、難點(diǎn):
重點(diǎn):“二面角”和“二面角的平面角”的概念
難點(diǎn):“二面角的平面角”概念的形成過程
二、教法分析
1、教學(xué)方法:在引入課題時(shí),我采用多媒體、實(shí)物演示法,在新課探究中采用問題啟導(dǎo)、活動(dòng)探究和類比發(fā)現(xiàn)法,在形成技能時(shí)以訓(xùn)練法、探究研討法為主。
2、教學(xué)控制與調(diào)節(jié)的措施:本節(jié)課由于充分運(yùn)用了多媒體和實(shí)物教具,預(yù)計(jì)學(xué)生對(duì)二面角及二面角平面角的'概念能夠理解,根據(jù)學(xué)生及教學(xué)的實(shí)際情況,估計(jì)二面角的具體求法一節(jié)課內(nèi)完成有一定的困難,所以將其放在下節(jié)課。
3、教學(xué)手段:教學(xué)手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學(xué)需要,確定利用多媒體課件來輔助教學(xué);此外,為加強(qiáng)直觀教學(xué),還要預(yù)先做好一些二面角的模型。
三、學(xué)法指導(dǎo)
1、樂學(xué):在整個(gè)學(xué)習(xí)過程中學(xué)生要保持強(qiáng)烈的好奇心和求知欲,不斷強(qiáng)化自己的創(chuàng)新意識(shí),全身心地投入到學(xué)習(xí)中去,成為學(xué)習(xí)的主人。
2、學(xué)會(huì):在掌握基礎(chǔ)知識(shí)的同時(shí),學(xué)生要注意領(lǐng)會(huì)化歸、類比聯(lián)想等數(shù)學(xué)思想方法的運(yùn)用,學(xué)會(huì)建立完善的認(rèn)知結(jié)構(gòu)。
3、會(huì)學(xué):通過自己親身參與,學(xué)生要領(lǐng)會(huì)復(fù)習(xí)類比和深入研究這兩種知識(shí)創(chuàng)新的方法,從而既學(xué)到知識(shí),又學(xué)會(huì)創(chuàng)新,既能解決問題,更能發(fā)現(xiàn)問題。
四、教學(xué)過程
心理學(xué)研究表明,當(dāng)學(xué)生明確數(shù)學(xué)概念的學(xué)習(xí)目的和意義時(shí),就會(huì)對(duì)概念的學(xué)習(xí)產(chǎn)生濃厚的興趣。創(chuàng)設(shè)問題情境,激發(fā)了學(xué)生的創(chuàng)新意識(shí),營造了創(chuàng)新思維的氛圍。
(一)、二面角
1、揭示概念產(chǎn)生背景。
問題情境1、在平面幾何中“角”是怎樣定義的?
問題情境2、在立體幾何中我們還學(xué)習(xí)了哪些角?
問題情境3、運(yùn)用多媒體和身邊的實(shí)例,展示我們遇到的另一種空間的角——二面角(板書課題)。
通過這三個(gè)問題,打開了學(xué)生的原有認(rèn)知結(jié)構(gòu),為知識(shí)的創(chuàng)新做好了準(zhǔn)備;同時(shí)也讓學(xué)生領(lǐng)會(huì)到,二面角這一概念的產(chǎn)生是因?yàn)樗c我們的生活密不可分,激發(fā)學(xué)生的求知欲。2、展現(xiàn)概念形成過程。
問題情境4、那么,應(yīng)該如何定義二面角呢?
創(chuàng)設(shè)這個(gè)問題情境,為學(xué)生創(chuàng)新思維的展開提供了空間。引導(dǎo)學(xué)生回憶平面幾何中“角”這一概念的引入過程。教師應(yīng)注意多讓學(xué)生說,對(duì)于學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新結(jié)果,教師要給與積極的評(píng)價(jià)。
問題情境5、同學(xué)們能舉出一些二面角的實(shí)例嗎?通過實(shí)際運(yùn)用,可以促使學(xué)生更加深刻地理解概念。
(二)、二面角的平面角
1、揭示概念產(chǎn)生背景。平面幾何中可以把角理解為是一個(gè)旋轉(zhuǎn)量,同樣一個(gè)二面角也可以看作是一個(gè)半平面以其棱為軸旋轉(zhuǎn)而成的,也是一個(gè)旋轉(zhuǎn)量。說明二面角不僅有大小,而且其大小是唯一確定的。平面與平面的位置關(guān)系,總的說來只有相交或平行兩種情況,為了對(duì)相交平面的相互位置作進(jìn)一步的探討,我們有必要來研究二面角的度量問題。
問題情境6、二面角的大小應(yīng)該怎么度量?能否轉(zhuǎn)化為平面角來處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產(chǎn)生的背景。
2、展現(xiàn)概念形成過程
(1)、類比。教師啟發(fā),尋找類比聯(lián)想的對(duì)象。
問題情境7、我們以前碰到過類似的問題嗎?引導(dǎo)學(xué)生回憶前面所學(xué)過的兩種空間角的定義,電腦演示以提高效率。
問題情境8、兩定義的共同點(diǎn)是什么?生:空間角總是轉(zhuǎn)化為平面的角,并且這個(gè)角是唯一確定的。
問題情境9、這個(gè)平面的角的頂點(diǎn)及兩邊是如何確定的?
(2)、提出猜想:二面角的大小也可通過平面的角來定義。對(duì)學(xué)生提出的猜想,教師應(yīng)該給予充分的肯定,以培養(yǎng)他們大膽猜想的意識(shí)和習(xí)慣,這對(duì)強(qiáng)化他們的創(chuàng)新意識(shí)大有幫助。
問題情境10、那么,這個(gè)角的頂點(diǎn)及兩邊應(yīng)如何確定呢?生:頂點(diǎn)放在棱上,兩邊分別放在兩個(gè)面內(nèi)。這也是學(xué)生直覺思維的結(jié)果。
(3)、探索實(shí)驗(yàn)。通過實(shí)驗(yàn),激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的動(dòng)手操作能力。
(4)、繼續(xù)探索,得到定義。
問題情境11、那么,怎樣使這個(gè)角的大小唯一確定呢?師生共同探討后發(fā)現(xiàn),角的頂點(diǎn)確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內(nèi)唯一確定,聯(lián)想到平面內(nèi)過直線上一點(diǎn)的垂線的唯一性,由此發(fā)現(xiàn)二面角的大小的一種描述方法。
(5)、自我驗(yàn)證:要求學(xué)生閱讀課本上的定義。并說明定義的合理性,教師作適當(dāng)?shù)囊龑?dǎo),并加以理論證明。
(三)、二面角及其平面角的畫法
主要分為直立式和平臥式兩種,用電腦《幾何畫板》作圖。
(四)、范例分析
為鞏固學(xué)生所學(xué)知識(shí),由于時(shí)間的關(guān)系設(shè)置了一道例題。來源于實(shí)際生活,不但培養(yǎng)了學(xué)生分析問題和解決問題的能力,也讓學(xué)生領(lǐng)會(huì)到數(shù)學(xué)概念來自生活實(shí)際,并服務(wù)于生活實(shí)際,從而增強(qiáng)他們應(yīng)用數(shù)學(xué)的意識(shí)。
例:一張邊長為10厘米的正三角形紙片ABC,以它的高AD為折痕,折成一個(gè)1200二面角,求此時(shí)B、C兩點(diǎn)間的距離。
分析:涉及二面角的計(jì)算問題,關(guān)鍵是找出(或作出)該二面角的平面角。引導(dǎo)學(xué)生充分利用已知圖形的性質(zhì),最后發(fā)現(xiàn)可由定義找出該二面角的平面角。可讓學(xué)生先做,為調(diào)動(dòng)學(xué)生的積極性,并增加學(xué)生的參與感,活躍課堂的氣氛,教師可給學(xué)生板演的機(jī)會(huì)。教師講評(píng)時(shí)強(qiáng)調(diào)解題規(guī)范即必須證明∠BDC是二面角B—AD—C的平面角。
變式訓(xùn)練:圖中共有幾個(gè)二面角?能求出它們的大小嗎?根據(jù)課堂實(shí)際情況,本
題的變式訓(xùn)練也可作為課后思考題。
題后反思:(1)解題過程中必須證明∠BDC是二面角B—AD—C的平面角。
(2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)
(五)、練習(xí)、小結(jié)與作業(yè)
練習(xí):習(xí)題9.7的第3題
小結(jié)在復(fù)習(xí)完二面角及其平面角的概念后,要求學(xué)生對(duì)空間中三種角加以比較、歸納,以促成學(xué)生建立起空間中角這一概念系統(tǒng)。同時(shí)要求學(xué)生對(duì)本節(jié)課的學(xué)習(xí)方法進(jìn)行總結(jié),領(lǐng)會(huì)復(fù)習(xí)類比和深入研究這兩種知識(shí)創(chuàng)新的方法。
作業(yè):習(xí)題9.7的第4題
思考題:見例題
五、板書設(shè)計(jì)(見課件)
只要大家用心學(xué)習(xí),認(rèn)真復(fù)習(xí),就有可能在高中的戰(zhàn)場上考取自己理想的成績。
《二面角》說課稿2
一、教材簡析:
1.地位與作用:
本節(jié)是高二數(shù)學(xué)下冊(cè)第九章《直線、平面、簡單幾何體》中相關(guān)§96二面角的求解問題。是在立體幾何知識(shí)學(xué)習(xí)完畢,學(xué)生已具有了一定的空間想象能力,掌握了一定的立體幾何的研究方法的基礎(chǔ)之上,對(duì)二面角求解方法進(jìn)行的一個(gè)補(bǔ)充。二面角的求解是立體幾何部分的一個(gè)重點(diǎn)也是一個(gè)難點(diǎn),本節(jié)內(nèi)容為學(xué)生提供一個(gè)新的視角。
2.教學(xué)內(nèi)容及目標(biāo)
教學(xué)內(nèi)容:
將異面直線兩點(diǎn)間距離公式變形應(yīng)用于求二面角,變形所得公式就是本節(jié)所學(xué)主要內(nèi)容,暫且稱這個(gè)公式為二面角余弦公式。
教學(xué)目標(biāo):
知識(shí)目標(biāo):異面直線兩點(diǎn)間距離公式在求二面角中的應(yīng)用;
能力目標(biāo):
(1).推廣引申不但能加深對(duì)原題的理解,而且對(duì)于擴(kuò)大解題效果,提高解題能力,培養(yǎng)發(fā)散思維,激發(fā)創(chuàng)新意識(shí),都有不可忽視的積極作用。
(2).通過轉(zhuǎn)化問題探究公式條件的過程,培養(yǎng)學(xué)生探索問題的精神,提高學(xué)生化歸的意識(shí)和轉(zhuǎn)化的能力。
情感目標(biāo):通過問題的轉(zhuǎn)化過程,讓學(xué)生認(rèn)識(shí)萬物都處于聯(lián)系之中,我們要用聯(lián)系的觀點(diǎn)看待問題。
3.教學(xué)重點(diǎn)和教學(xué)難點(diǎn)
重點(diǎn):二面角余弦公式條件的發(fā)現(xiàn),結(jié)構(gòu)的確定;
難點(diǎn):二面角余弦公式條件的發(fā)現(xiàn),結(jié)構(gòu)的確定;
二、學(xué)情分析:
1.起點(diǎn)能力分析
立體幾何知識(shí)學(xué)習(xí)完畢,學(xué)生已具有了一定的空間想象能力,掌握了一定的立體幾何的研究方法,并成為本節(jié)的學(xué)習(xí)基礎(chǔ)。
2.一般特點(diǎn)分析
高二學(xué)生觀察力已具有一定的目的性、精細(xì)性、持久性,有意識(shí)記占主導(dǎo)地位、意義識(shí)記以占重要地位,同時(shí)概念理解能力、推理能力有所提高,具有一定的掌握和運(yùn)用邏輯法則的能力,但由于認(rèn)知水平的不同,學(xué)生掌握和運(yùn)用邏輯法則的能力存在不平衡性。
三、教法分析:
本節(jié)采用啟導(dǎo)法,以質(zhì)疑啟發(fā)、直觀啟發(fā)為主,通過一系列帶有啟發(fā)性、思考性的問題,創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生思考,教師適時(shí)演示,利用多媒體的直觀性,激發(fā)學(xué)生的學(xué)習(xí)興趣,化靜為動(dòng),使學(xué)生始終處于主動(dòng)探索問題的積極狀態(tài),從而培養(yǎng)學(xué)生的思維能力。
四、學(xué)法指導(dǎo):
根據(jù)學(xué)法指導(dǎo)自主性和差異性原則,讓學(xué)生在“觀察——發(fā)現(xiàn)——推理——應(yīng)用”的學(xué)習(xí)過程中,自主參與知識(shí)的發(fā)生、發(fā)展、形成的過程,使學(xué)生掌握知識(shí),發(fā)展思維能力。
五、教學(xué)程序
1.教學(xué)思路
設(shè)疑導(dǎo)入→構(gòu)建條件→形成公式→公式應(yīng)用→教學(xué)反思。
2.教學(xué)環(huán)節(jié)安排
(一).情境設(shè)置:
習(xí)題1:教科書80頁題10
設(shè)計(jì)意圖:由此題與學(xué)生共同回顧二面角的定義及其求解方法,并且根據(jù)題設(shè)條件,由學(xué)生發(fā)現(xiàn)該二面角的求解由異面直線AC、DB的位置關(guān)系來確定,提出為什么異面直線可以確定二面角,異面直線怎樣確定二面角呢?引出問題二,從而進(jìn)入第二環(huán)節(jié)——探索研究。
(二)、探索研究:
問題二:
問1:什么是異面直線的公垂線?兩異面直線有多少條公垂線?
問2:設(shè)異面直線a、b公垂線為l,則a、b、l三條直線可以確定多少個(gè)平面?
問3:這兩相交平面可以構(gòu)成兩對(duì)二面角,這兩對(duì)二面角大小有什么關(guān)系?(設(shè)計(jì)意圖:到此完成由異面直線構(gòu)造二面角)
問4:從四個(gè)二面角任選一個(gè)二面角,該二面角的大小與異面直線位置有什么關(guān)系?
通過問題的層層深入,讓學(xué)生自己觀察、思考得出異面直線的位置可以確定二面角的大小的結(jié)論。再通過教具的演示讓學(xué)生發(fā)現(xiàn)線段AM、BN、AB、MN任意一個(gè)的改變都會(huì)影響異面直線的位置,說明這四條線段可以共同確定二面角,從而發(fā)現(xiàn)公式的結(jié)構(gòu),突破難點(diǎn);
問5:令a∩l=A,b∩l=B,M∈a,N∈b且MA=m,NB=n,AB=d,MN=l,求二面角α―l―β。
通過問題5將異面直線的位置量化,由學(xué)生自己推導(dǎo),得出二面角的余弦公式
設(shè)計(jì)意圖:通過問題5設(shè)出四條線段的長,求二面角的大小,從做輔助線、確定二面角平面角,到在三角形中計(jì)算求值,最后整理解題過程,由學(xué)生自主解決,教師適時(shí)引導(dǎo),多問學(xué)生為什么,糾正學(xué)生語言表達(dá)上的錯(cuò)誤,提示解題不符邏輯關(guān)系的地方,讓學(xué)生在相互補(bǔ)充,相互找不足的這一自我評(píng)價(jià)、自我調(diào)整過程中,完善推理過程,得出二面角的余弦公式。通過這一數(shù)學(xué)交流活動(dòng),暴露學(xué)生的思維過程,提高學(xué)生語言表達(dá)能力,培養(yǎng)學(xué)生合情推理能力,注重學(xué)生作為個(gè)體發(fā)展能力的'同時(shí),也注重培養(yǎng)學(xué)生協(xié)同合作共同探索、的精神。并且讓學(xué)生體會(huì)數(shù)學(xué)學(xué)習(xí)不僅重在學(xué)習(xí)一個(gè)結(jié)論,而是注重學(xué)習(xí)的過程,讓學(xué)生在自己發(fā)現(xiàn)結(jié)論、自己推得公式中體驗(yàn)成功。
問題三:用問題二的方法求解習(xí)題一
設(shè)計(jì)意圖:鞏固公式的應(yīng)用,明確如何應(yīng)用公式;通過對(duì)比公式與習(xí)題一的條件,讓學(xué)生認(rèn)識(shí)到本節(jié)所學(xué)求二面角的方法是對(duì)教科書習(xí)題一般化所得的結(jié)論,體會(huì)數(shù)學(xué)從“特殊”到“一般”,再從“一般”到“特殊”的研究過程。
問題四:將公式條件中二面角兩半平面的線段放到了以棱上線段為公共邊的三角形中,作為了兩三角形的高。
設(shè)計(jì)意圖:通過這一過程,進(jìn)一步深化所推公式中量的理解,其作用是半平面用三角形表示,更有利于在柱體或錐體中解決二面角的求解問題;
(三)、鞏固訓(xùn)練
習(xí)題2
1.(改編自教科書80頁題11)把長、寬分別為4、3的長方形ABCD沿對(duì)角線AC折疊,使BD長為7/5,求二面角B―AC―D。
2.(教科書80頁題11)把長、寬分別為4、3的長方形ABCD沿對(duì)角線AC折疊成直二面角,求頂點(diǎn)B與D之間的距離。
設(shè)計(jì)意圖:
題1是對(duì)問題四結(jié)論的簡單應(yīng)用。此題題設(shè)是將平面圖形折成立體圖形,求形成的二面角的大小,鞏固平面圖形折疊過程中量的變化情況。
題2讓學(xué)生認(rèn)識(shí):二面角余弦公式建立了四個(gè)線段、一個(gè)角五個(gè)量間的關(guān)系,知道其中任意四個(gè),都可以求第五個(gè)量,加深對(duì)公式的認(rèn)識(shí),熟悉公式的變形應(yīng)用。
習(xí)題3:(選自2005年湖南高考題)已知四邊形ABCD是上、下底邊分別為2和6,高為的等腰梯形,將它沿對(duì)稱軸OO′折成直二面角,求二面角O―AC―O′的大小。
設(shè)計(jì)意圖:讓學(xué)生創(chuàng)設(shè)公式應(yīng)用條件,自主解決問題,同時(shí)再次鞏固立體空間中量的求解用平面解決的思想方法。
(四).總結(jié)提煉:
1.說明本節(jié)所學(xué)求二面角方法的可行性;
2.說明本節(jié)所學(xué)求二面角方法的合理性;
3.本節(jié)所學(xué)求二面角的方法不是教科書中的定理、公式,因此不能作為已知結(jié)論在解答題中應(yīng)用。但學(xué)習(xí)重視結(jié)果,更注重學(xué)習(xí)的過程,這節(jié)課學(xué)習(xí)的意義,不是公式本身,而是用已知的知識(shí)探究出新的解決問題的方法的過程。
(五):作業(yè)
習(xí)題4、為必做題,習(xí)題5為選做題
設(shè)計(jì)意圖:布置作業(yè)有彈性,避免一刀切,將上述思維發(fā)散的過程延伸到課后,使學(xué)生活躍的思維得以發(fā)展,進(jìn)而形成思維習(xí)慣。
總之,在整個(gè)課堂教學(xué)中,努力挖掘蘊(yùn)含于知識(shí)生成過程中的數(shù)學(xué)思想方法,有機(jī)結(jié)合,有意滲透,以培養(yǎng)學(xué)生的思維能力。
《二面角》說課稿3
一、教材分析
1、教材地位和作用
二面角及其平面角的概念是立體幾何最重要的概念之一。二面角的概念發(fā)展、完善了空間角的概念;而二面角的平面角不但定量描述了兩相交平面的相對(duì)位置,同時(shí)它也是空間中線線、線面、面面垂直關(guān)系的一個(gè)匯集點(diǎn)。搞好本節(jié)課的學(xué)習(xí),對(duì)學(xué)生系統(tǒng)地掌握直線和平面的知識(shí)乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。教學(xué)大綱明確要求要讓學(xué)生掌握二面角及其平面角的概念和運(yùn)用。
2、教學(xué)目標(biāo)
根據(jù)上面對(duì)教材的分析,并結(jié)合學(xué)生的認(rèn)知水平和思維特點(diǎn),確定本節(jié)課的教學(xué)目標(biāo):
認(rèn)知目標(biāo):
(1)使學(xué)生正確理解二面角及其平面角的概念,并能初步運(yùn)用它們解決實(shí)際問題。
(2)進(jìn)一步培養(yǎng)學(xué)生把空間問題轉(zhuǎn)化為平面問題的化歸思想。
能力目標(biāo):以培養(yǎng)學(xué)生的創(chuàng)新能力和動(dòng)手能力為重點(diǎn)。
(1)突出對(duì)類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學(xué)生的創(chuàng)新能力。
(2)通過對(duì)圖形的觀察、分析、比較和操作來強(qiáng)化學(xué)生的動(dòng)手操作能力。
教育目標(biāo):
(1)使學(xué)生認(rèn)識(shí)到數(shù)學(xué)知識(shí)來自實(shí)踐,并服務(wù)于實(shí)踐,從而增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)。
(2)通過揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進(jìn)一步培養(yǎng)學(xué)生聯(lián)系的辯證唯物主義觀點(diǎn)。
3、本節(jié)課教學(xué)的重、難點(diǎn)是兩個(gè)過程的教學(xué):
(1)二面角的平面角概念的形成過程。
(2)尋找二面角的平面角的方法的發(fā)現(xiàn)過程。
其理由如下:
(1)現(xiàn)行教材省略了概念的形成過程和方法的發(fā)現(xiàn)過程,沒有反映出科學(xué)認(rèn)識(shí)產(chǎn)生的辯證過程,與學(xué)生的認(rèn)知規(guī)律相悖,給學(xué)生的學(xué)習(xí)造成了很大的困難,非常不利于學(xué)生創(chuàng)新能力、獨(dú)立思考能力以及動(dòng)手能力的培養(yǎng)。
(2)現(xiàn)代認(rèn)知學(xué)認(rèn)為,揭示知識(shí)的形成過程,對(duì)學(xué)生學(xué)習(xí)新知識(shí)是十分必要的。同時(shí)通過展現(xiàn)知識(shí)的發(fā)生、發(fā)展過程,給學(xué)生思考、探索、發(fā)現(xiàn)和創(chuàng)新提供了最大的空間,可以使學(xué)生在整個(gè)教學(xué)過程中始終處于積極的思維狀態(tài),進(jìn)而培養(yǎng)他們獨(dú)立思考和大膽求索的精神,這樣才能全面落實(shí)本節(jié)課的教學(xué)目標(biāo)。
二、指導(dǎo)思想和教學(xué)方法
在設(shè)計(jì)本教學(xué)時(shí),主要貫徹了以下兩個(gè)思想:
1、樹立以學(xué)生發(fā)展為本的思想。通過構(gòu)建以學(xué)習(xí)者為中心、有利于學(xué)生主體精神、創(chuàng)新能力健康發(fā)展的寬松的教學(xué)環(huán)境,提供學(xué)生自主探索和動(dòng)手操作的機(jī)會(huì),鼓勵(lì)他們創(chuàng)新思考,親身參與概念和方法的形成過程。2、堅(jiān)持協(xié)同創(chuàng)新原則。把教材創(chuàng)新、教法創(chuàng)新以及學(xué)法創(chuàng)新有機(jī)地統(tǒng)一起來,因?yàn)橹挥薪處焺?chuàng)新地教,學(xué)生創(chuàng)新地學(xué),才能營建一個(gè)有利于創(chuàng)新能力培養(yǎng)的良好環(huán)境。
首先是教材創(chuàng)新。
(1)在二面角的平面角概念引入上,我變課本上的“直接給出定義”為“類比——猜想——操作——定義”,也就是變封閉的、邏輯演繹體系為開放的、探索性的發(fā)現(xiàn)過程。
(2)在引入定義之后,例題講解之前,引導(dǎo)學(xué)生發(fā)現(xiàn)尋找二面角的平面角的方法,為例題做好鋪墊。
(3)重新編排例題。
其次是教法創(chuàng)新。采用多種創(chuàng)新的教學(xué)方法,包括問題解決法、類比發(fā)現(xiàn)法、研究發(fā)現(xiàn)法等教學(xué)方法。
這組教學(xué)方法的特點(diǎn)是教師通過創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生逐步發(fā)現(xiàn)知識(shí)的形成過程,使教學(xué)活動(dòng)真正建立在學(xué)生自主活動(dòng)和探索的基礎(chǔ)上,著力培養(yǎng)學(xué)生的創(chuàng)新能力。
這組教學(xué)方法使得學(xué)生在解決問題的過程中學(xué)數(shù)學(xué),用數(shù)學(xué),不僅強(qiáng)調(diào)動(dòng)腦思考,而且強(qiáng)調(diào)動(dòng)手操作,親身體驗(yàn),注重多感官參與、多種心理能力的投入,通過學(xué)生全面、多樣的主體實(shí)踐活動(dòng),促進(jìn)他們獨(dú)立思考能力、動(dòng)手能力等多方面素質(zhì)的整體發(fā)展。
教學(xué)手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的`培養(yǎng),根據(jù)本節(jié)課的教學(xué)需要,確定利用《幾何畫板》制作課件來輔助教學(xué);此外,為加強(qiáng)直觀教學(xué),教師可預(yù)先做好一些模型。
最后是學(xué)法創(chuàng)新。意在指導(dǎo)學(xué)生會(huì)創(chuàng)新地學(xué)。
1、樂學(xué):在整個(gè)學(xué)習(xí)過程中學(xué)生要保持強(qiáng)烈的好奇心和求知欲,不斷強(qiáng)化自己的創(chuàng)新意識(shí),全身心地投入到學(xué)習(xí)中去,成為學(xué)習(xí)的主人。
2、學(xué)會(huì):在掌握基礎(chǔ)知識(shí)的同時(shí),學(xué)生要注意領(lǐng)會(huì)化歸、類比聯(lián)想等數(shù)學(xué)思想方法的運(yùn)用,學(xué)會(huì)建立完善的認(rèn)知結(jié)構(gòu)。
3、會(huì)學(xué):通過自已親身參與,學(xué)生要領(lǐng)會(huì)復(fù)習(xí)類比和深入研究這兩種知識(shí)創(chuàng)新的方法,從而既學(xué)到知識(shí),又學(xué)會(huì)創(chuàng)新。
三、程序安排
(一)、二面角
1、揭示概念產(chǎn)生背景。
心理學(xué)研究表明,當(dāng)學(xué)生明確數(shù)學(xué)概念的學(xué)習(xí)目的和意義時(shí),就會(huì)對(duì)概念的學(xué)習(xí)產(chǎn)生濃厚的興趣。創(chuàng)設(shè)問題情境,激發(fā)了學(xué)生的創(chuàng)新意識(shí),營造了創(chuàng)新思維的氛圍。
問題情境1、我們是如何定量研究兩平行平面的相對(duì)位置的?
問題情境2、立幾中常用距離和角來定量描述兩個(gè)元素之間的相對(duì)位置,為什么不引入兩平行平面所成的角?
問題情境3、我們應(yīng)如何定量研究兩個(gè)相交平面之間的相對(duì)位置呢?
通過這三個(gè)問題,打開了學(xué)生的原有認(rèn)知結(jié)構(gòu),為知識(shí)的創(chuàng)新做好了準(zhǔn)備;同時(shí)也讓學(xué)生領(lǐng)會(huì)到,二面角這一概念的產(chǎn)生是因?yàn)檠芯績上嘟黄矫娴南鄬?duì)位置的需要,從而明確新課題研究的必要性,觸發(fā)學(xué)生積極思維活動(dòng)的展開。
2、展現(xiàn)概念形成過程。
《二面角》說課稿4
一、說教材
二面角的概念是普通高中課程標(biāo)準(zhǔn)人教A版數(shù)學(xué)必修2第2章第3節(jié)兩個(gè)平面垂直的判定中的內(nèi)容。它是在學(xué)生學(xué)習(xí)了異面直線所稱的角、直線與平面所成的角之后,有一個(gè)要學(xué)習(xí)的空間角,而二面角的本質(zhì)特征時(shí)候從度量的角度,通過二面角的平面角揭示了平面與平面的位置關(guān)系(垂直關(guān)系是其中的一種特殊關(guān)系),它是為以后從度量角研究面與面的非垂直關(guān)系奠定了基礎(chǔ),因此二面角的內(nèi)容在教材中起到了一個(gè)承上啟下的作用,同時(shí),通過本節(jié)課的學(xué)習(xí),學(xué)生的空間想象能力和邏輯思維能力進(jìn)一步得到提升。
二、說學(xué)情
高一學(xué)生知識(shí)經(jīng)驗(yàn)已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力,針對(duì)學(xué)生主觀能動(dòng)性強(qiáng),思維活躍的特點(diǎn),我在授課中主要以問題為紐帶引導(dǎo)學(xué)生發(fā)現(xiàn)問題—類比聯(lián)想—解決問題。
三、說教學(xué)目標(biāo)
(一)知識(shí)與技能
能正確概述“二面角”、“二面角的平面角”的概念,會(huì)做二面角的平面角。
(二)過程與方法
利用類比的方法推理二面角的有關(guān)概念,提升知識(shí)遷移的能力。
(三)情感態(tài)度與價(jià)值觀
營造和諧、輕松的學(xué)習(xí)氛圍,通過學(xué)生之間,師生之間的交流、合作和評(píng)價(jià)達(dá)成共識(shí)、共享、共進(jìn),實(shí)現(xiàn)教學(xué)相長和共同發(fā)展。
四、說教學(xué)重難點(diǎn)
(一)重點(diǎn)
“二面角”和“二面角的平面角”的概念。
(二)難點(diǎn)
“二面角的平面角”概念的形成過程。
五、說教學(xué)方法
數(shù)學(xué)是一門培養(yǎng)人思維,發(fā)展人思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識(shí)和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境—提出數(shù)學(xué)問題—嘗試解決問題—驗(yàn)證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體與模型相結(jié)合,將抽象問題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。
六、說教學(xué)過程
(一)新課導(dǎo)入
首先我會(huì)用多媒體課件展示生活中的一些模型,請(qǐng)學(xué)生觀察:
1.打開書本的過程;
2.發(fā)射人造地球衛(wèi)星,要根據(jù)需要使衛(wèi)星的軌道平面與地球的赤道平面成一定的角度;
3.修筑水壩時(shí),為了使水壩堅(jiān)固耐久,須使水壩坡面與水平面成適當(dāng)?shù)慕嵌?
引導(dǎo)學(xué)生說出書本的兩個(gè)面、水壩面與底面,衛(wèi)星軌道面與地球赤道面均是呈一定的角度關(guān)系。
【設(shè)計(jì)意圖】通過一系列的模型與動(dòng)畫展示,從生活中提取模型,讓學(xué)生由感性認(rèn)識(shí)出發(fā),從多種模型中抽象出二面角的概念,這符合認(rèn)知的一般規(guī)律。同時(shí),也讓學(xué)生體會(huì)到數(shù)學(xué)來源于生活,也服務(wù)于生活,增加學(xué)生學(xué)習(xí)本節(jié)內(nèi)容的興趣
(二)新課探究
1.二面角的概念
利用多媒體展示初中所學(xué)的平面角的形成過程,并向?qū)W生提問,可否根據(jù)平面內(nèi)角的定義給上述的這些圖形下一個(gè)定義。
在提問過程中注意引導(dǎo)學(xué)生進(jìn)行類比,大膽概括。同時(shí),對(duì)學(xué)生的表現(xiàn)加以肯定,注意規(guī)范學(xué)生的語言。最后引出二面角的概念。在此要注意講解半平面的概念,即平面內(nèi)的一條直線把平面分成兩部分,這兩部分通常稱為半平面。并根據(jù)具體模型講解二面角的棱,面等相關(guān)概念。
(1)對(duì)比平面角得出二面角的概念
(2)二面角的表示
接下來注意講解二面角表示法:α-a-β或α-AB-β.在此要注意分析講解三個(gè)量的含義。
二面角的畫法
然后是師生同步,練習(xí)畫二面角。著重練習(xí)平臥式和直立式,可請(qǐng)學(xué)生同桌之間互相點(diǎn)評(píng),強(qiáng)調(diào)平行關(guān)系。
2.二面角的平面角
一般地說,量角器只能測量“平面角”讓學(xué)生大膽猜想如何去測量二面角的大小。學(xué)生類比平面角,會(huì)想到將空間角化為平面角.
(1)二面角的平面角的定義
教師給出二面角的平面交的定義:以二面角的'棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角.
教師進(jìn)一步對(duì)定義進(jìn)行深化,請(qǐng)學(xué)生找出“二面角的平面角”的定義三個(gè)主要特征,即點(diǎn)在棱上、線在面內(nèi)、與棱垂直
并通過實(shí)物展示讓學(xué)生認(rèn)識(shí)直二面角。
(2)二面角的平面角的作法
接下來,師生同步,共同作出某一二面角的平面角,注意點(diǎn)P的三種情況:
①點(diǎn)P在棱上—定義法
②點(diǎn)P在一個(gè)半平面上—三垂線定理法
③點(diǎn)P在二面角內(nèi)—垂面法
【設(shè)計(jì)意圖】培養(yǎng)學(xué)生的觀察能力,學(xué)生會(huì)發(fā)現(xiàn)身邊很多的圖形都和教師展示的模型一樣。同時(shí),這樣的教學(xué)也符合認(rèn)識(shí)事物的一般規(guī)律:由感性認(rèn)識(shí)到理性認(rèn)識(shí),再到感性認(rèn)識(shí),再到理性認(rèn)識(shí)。
(三)深化新知
提問二面角的取值范圍,強(qiáng)調(diào)一般規(guī)定為[0,π]。重點(diǎn)要讓學(xué)生理解0和的區(qū)別。
(四)鞏固提高
為了讓學(xué)生切實(shí)掌握二面角的概念及其求法,設(shè)計(jì)兩個(gè)環(huán)節(jié):通過例題講解讓學(xué)生學(xué)會(huì)運(yùn)用。通過課堂作業(yè),讓學(xué)生鞏固新知。
首先是基礎(chǔ)題,利用概念判斷命題的真假,如:
(1)兩個(gè)相交平面組成的圖形叫做二面角。( )
(2)角的兩邊分別在二面角的兩個(gè)面內(nèi),則這個(gè)角是二面角的平面角。( )
(3)二面角的平面角所在平面垂直于二面角的棱。( )
【設(shè)計(jì)意圖】通過這幾道判斷題,鞏固學(xué)生對(duì)二面角概念的理解。
此外我會(huì)在添加兩道以正方體為模型,求解兩個(gè)平面的二面角的題目,抽取兩位同學(xué)在黑板上扮演,我將會(huì)在巡視過程中對(duì)部分學(xué)生加以指導(dǎo)。最后對(duì)黑板上的兩名學(xué)生的解題過程加以分析完善,規(guī)范的書寫格式。
(五)小結(jié)作業(yè)
教師口頭提問:
(1)這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?
(2)在數(shù)學(xué)問題的解決過程中運(yùn)用了哪些數(shù)學(xué)思想?
設(shè)計(jì)意圖:啟發(fā)式的課堂小結(jié)方式能讓學(xué)生主動(dòng)回顧本節(jié)課所學(xué)的知識(shí)點(diǎn)。也促使學(xué)生對(duì)知識(shí)網(wǎng)絡(luò)進(jìn)行主動(dòng)建構(gòu)。
作業(yè):以正方體為模型請(qǐng)找出一個(gè)所成角度為四十五度的二面角,并證明。
設(shè)計(jì)意圖:利用正方體模型,激發(fā)學(xué)生的探索欲望,體現(xiàn)分層教學(xué)的思想,才能達(dá)到因材施教的目的。
【《二面角》說課稿】相關(guān)文章:
說課稿范文說課稿 范文10-04
《燈光》的說課稿10-27
優(yōu)秀說課稿11-04
《亡羊補(bǔ)牢》說課稿11-04
亡羊補(bǔ)牢說課稿11-03
數(shù)軸說課稿09-28
英語說課稿09-28
散步說課稿09-29
古詩的說課稿11-10