- 相關(guān)推薦
作為一位不辭辛勞的人民教師,時常需要編寫說課稿,說課稿可以幫助我們提高教學(xué)效果。那么什么樣的說課稿才是好的呢?以下是小編幫大家整理的高中數(shù)學(xué)說課稿模板,希望對大家有所幫助。
高中數(shù)學(xué)說課稿模板1
一、教材分析:
"數(shù)列"是中學(xué)數(shù)學(xué)的重要內(nèi)容之一。不僅在歷年的高考中占有一定的比重,而且在實際生活中也經(jīng)常要用到數(shù)列的一些知識。例如:儲蓄、分期付款中的有關(guān)計算就要用到數(shù)列知識。
就本節(jié)課而言,在給出數(shù)列的基本概念之后,結(jié)合例題,指出數(shù)列可以看作定義域為正整數(shù)集(或它的有限子集)的函數(shù)。因此,本節(jié)課的內(nèi)容,一方面是前面函數(shù)知識的延伸及應(yīng)用,可以使學(xué)生加深對函數(shù)概念的理解;另一方面也可以為后面學(xué)習(xí)等差數(shù)列、等比數(shù)列的通項、求和等知識打下鋪墊。所以本節(jié)課在教材中起到了"承上啟下"的作用,必須講清、講透。
二、教學(xué)目標(biāo):
根據(jù)上面對教材的分析,并結(jié)合學(xué)生的認知水平和思維特點,確定本節(jié)課的教學(xué)目標(biāo)。
1、知識目標(biāo):
(1)形成并掌握數(shù)列及其有關(guān)概念,識記數(shù)列的表示和分類,了解數(shù)列通項公式的意義。
(2)理解數(shù)列的通項公式,能根據(jù)數(shù)列的通項公式寫出數(shù)列的任意一項。對比較簡單的數(shù)列,使學(xué)生能根據(jù)數(shù)列的前幾項觀察歸納出數(shù)列的通項公式,并通過數(shù)列與函數(shù)的比較加深對數(shù)列的認識。
2、能力目標(biāo):
培養(yǎng)學(xué)生觀察、歸納、類比、聯(lián)想等分析問題的能力,同時加深理解數(shù)學(xué)知識之間相互滲透性的思想。
3、情感目標(biāo):
通過滲透函數(shù)、方程思想,培養(yǎng)學(xué)生的思維能力,使學(xué)生在民主、和諧的活動中感受學(xué)習(xí)的樂趣。通過介紹數(shù)列與函數(shù)間存在的特殊到一般關(guān)系,向?qū)W生進行辯證唯物主義思想教育。
三、重點、難點:
1、教學(xué)重點
理解數(shù)列的概念及其通項公式,加強與函數(shù)的聯(lián)系,并能根據(jù)通項公式寫出數(shù)列中的任意一項。
2、教學(xué)難點
根據(jù)數(shù)列前幾項的特點,通過多角度、多層次的觀察和分析,歸納出數(shù)列的通項公式。
四、教法學(xué)法
本節(jié)課以"問題情境——歸納抽象——鞏固訓(xùn)練"的模式展開,引導(dǎo)學(xué)生從知識和生活經(jīng)驗出發(fā),提出問題并與學(xué)生共同探索、討論解決問題的方法,讓學(xué)生經(jīng)歷知識的形成過程,從而理解更加透徹。
現(xiàn)代教學(xué)觀明確指出:教師是主導(dǎo),學(xué)生是主體,學(xué)生應(yīng)成為學(xué)習(xí)的主人。根據(jù)本節(jié)內(nèi)容及學(xué)生的認知規(guī)律,針對不同內(nèi)容應(yīng)選擇不同的方法。對于國際象棋棋盤麥粒采用電腦動畫演示,增強感性認識;所舉的引例及數(shù)列的函數(shù)定義,可采用探索發(fā)現(xiàn)法;對通項公式及數(shù)列的分類等概念采用指導(dǎo)閱讀法;對于難題(根據(jù)數(shù)列的前幾項寫出一個通項公式)采用講練結(jié)合法。
"授人以魚,不如授人以漁",平時在教學(xué)中教師應(yīng)不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課從學(xué)生實際出發(fā),創(chuàng)設(shè)情境,引導(dǎo)學(xué)生觀察、分析,探索發(fā)現(xiàn),歸納總結(jié),培養(yǎng)學(xué)生積極思維的品質(zhì),加強主動學(xué)習(xí)的能力。
為了有效地突出重點,突破難點,增大課堂容量,提高課堂效率,本節(jié)課將常規(guī)教學(xué)手段與現(xiàn)代教學(xué)手段相結(jié)合,將引例、例題、練習(xí)等實物投影。
五、教學(xué)過程
1、創(chuàng)設(shè)情景,激發(fā)興趣,引入新課
(1)電腦動畫演示:國際象棋棋盤格子中放有麥粒的示意圖,從而得到一組數(shù):1,2,22,23……263
敘述故事:給你一張報紙,你可以用它登上月球,你相信嗎?只要不斷地將報紙對折42次以后,報紙的厚度就可以達到月球和地球的距離。
設(shè)計意圖:以實例引入概念,再配以電腦動畫,敘述小故事,增強了感性認識,調(diào)動學(xué)生學(xué)習(xí)新知識的積極性。
(2)投影演示,再觀察以下幾列數(shù):
①某班學(xué)生的學(xué)號:1,2,3,4……,50
②從1984年到2004年,中國體育健兒參加奧運會每屆所得的金牌數(shù):
15,5,16,16,28,32
③某次活動,在1km長的路段,從起點開始,每隔10m放置一個垃圾筒,由近及遠各筒與起點的距離排成一列數(shù):0.10.20.30,……1000
④放射性物質(zhì)衰變,設(shè)原質(zhì)量為1,則各年的剩留量依次為:1,0.84,0.842,0.843,……
2、歸納抽象,形成概念
(1)學(xué)生嘗試敘述數(shù)列的定義:啟發(fā)學(xué)生觀察上述幾組數(shù)據(jù)后,進行歸納總結(jié)定義:按一定次序排成的一列數(shù),叫數(shù)列,便于培養(yǎng)學(xué)生的抽象概括能力。
舉例1:1,3,5,7與7,5,3,1 這兩個數(shù)列有何區(qū)別?
舉例2:-1,1,-1,1,……是不是一個數(shù)列?
設(shè)計意圖:使學(xué)生注意把數(shù)列中的數(shù)和集合中的元素區(qū)分開來:
①數(shù)列中的數(shù)是有順序的,而集合中的元素是無序的。
②數(shù)列中的數(shù)可以重復(fù)出現(xiàn),而集中的元素不能重復(fù)出現(xiàn)。
進一步加深學(xué)生對數(shù)列定義的理解。
(2)數(shù)列的項及項的表示方法: an
(3)數(shù)列的表示方法:可寫成:a1,a2,a3,……,an……
或簡記為:{an},注意an與{an}的區(qū)別
上述(2)(3)采用指導(dǎo)閱讀法(書P106頁第7節(jié)~第8節(jié)第一句話),對an與{an}的區(qū)別進行集體討論歸納。
3、通項公式的探索
(1)觀察歸納定義
由學(xué)生觀察引例中數(shù)列的項與它在數(shù)列中的位置(即項的序號)間的關(guān)系:
實物投影:
序號 1 2 3 …… 64
↓ ↓ ↓ ↓
項 1= 21-1 2=22-1 22 = 23-1 …… 263
從而可看出項與項的序號之間可用一個公式:an =2n-1表示,該公式叫數(shù)列的'通項公式,然后歸納抽象出數(shù)列的通項公式的定義(略)。
(2)用函數(shù)觀點看待數(shù)列:這是一個難點,講解必須清楚、透徹。數(shù)列可看作是以自然數(shù)集或它的有限子集為定義域的函數(shù),當(dāng)自變量由小到大依次取值時對應(yīng)的一列函數(shù)值(這是數(shù)列的本質(zhì)),其圖象是一群孤立的點,畫圖(棋盤麥粒這個數(shù)列)
設(shè)計意圖:加深對函數(shù)概念的理解。
(3)數(shù)列的分類,并口答引例及數(shù)列①②③④分別歸于哪類數(shù)列。
4、講解例題
設(shè)計例題:①根據(jù)通項公式寫出前幾項并會判斷某個數(shù)是否為該數(shù)列中的項;②根據(jù)數(shù)列的前幾項寫出一個通項公式。
例1,根據(jù)下列數(shù)列{an}的通項公式,寫出它的前5項
(1) an= n/(n+1) (2)an=(-1)n · n
設(shè)計意圖:使學(xué)生正確掌握通項與序號的關(guān)系。
變式訓(xùn)練:問 2589/2590是否為數(shù)列(1)中的項
設(shè)計意圖:使學(xué)生明確方程思想是解決數(shù)列問題的重要方法。
例2,寫出下列數(shù)列的一個通項公式,使它的前4項分別是下列各數(shù):
(1)1,3,5,7
(2)2, -2,2 ,-2
(3)1 ,11 ,111 ,
設(shè)計意圖:引導(dǎo)學(xué)生進行解題后反思,對完善學(xué)生的認知結(jié)構(gòu)是十分必要。寫通項公式時,就是要去發(fā)現(xiàn)an與n的關(guān)系,對各項進行多角度、多層次觀察,找出這些項與相應(yīng)的項數(shù)(即序號)之間的對應(yīng)關(guān)系。(注:遇到分數(shù),可分別觀察分子組的數(shù)列特征與分母組成的數(shù)列特征;若為正負相間的項,則可用-1的奇次冪或偶次冪進行符號交換,有時也可根據(jù)相鄰的項,適當(dāng)調(diào)整有關(guān)的表達式。)
5、練習(xí)鞏固
投影演示:
(1)寫出數(shù)列1,-1,1,-1,……的一個通項公式
(2)是否所有數(shù)列都有通項公式?
上述(1)的設(shè)計意圖:an=(-1)n+1也可寫成 (分段函數(shù)的形式)(當(dāng)n為奇數(shù)時,n為偶數(shù)時),說明根據(jù)數(shù)列的前幾項寫出的通項公式可能不唯一。(2):引例②就沒有通項公式。通過這些練習(xí),使學(xué)生能及時消化,及時鞏固所學(xué)內(nèi)容。
6、歸納小結(jié)
由學(xué)生試著總結(jié)本節(jié)課所學(xué)內(nèi)容,老師適當(dāng)補充,可以訓(xùn)練學(xué)生的收斂思維,有助于完善學(xué)生的思維結(jié)構(gòu)。
(1) 數(shù)列及有關(guān)概念。
(2) 根據(jù)數(shù)列的通項公式求任意一項,并能判斷某數(shù)是否為該數(shù)列中的項。
(3) 根據(jù)數(shù)列的前幾項寫出數(shù)列的一個通項公式。
(4) 數(shù)列與函數(shù)的關(guān)系
7、課后作業(yè):
(1)課本P110/習(xí)題3.1/1(3)(4)(5);2、書P108/4(1)(3)(4)
(2)復(fù)習(xí)看書P106-107
六、評價與分析
本節(jié)課,教師可通過創(chuàng)設(shè)情景,適時引導(dǎo)的方式來激發(fā)學(xué)生積極思考的欲望,有時直接講解,有時組織掌握學(xué)生集體討論、探索發(fā)現(xiàn),課堂上除反復(fù)強調(diào)注意點外,還應(yīng)通過課堂練習(xí)和課后作業(yè)來強化它們。
通過本節(jié)課的學(xué)習(xí),學(xué)生不僅掌握了數(shù)列及有關(guān)概念,而且可體會到數(shù)學(xué)概念形成過程中蘊含的基本數(shù)學(xué)思想:"函數(shù)思想、數(shù)形結(jié)合思想、特殊化思想",使之獲得內(nèi)心感受,提高了基本技能和解決問題的能力,也可以逐漸學(xué)會辯證地看待問題。
高中數(shù)學(xué)說課稿模板2
一、教學(xué)目標(biāo)
(一)知識與技能
1、進一步熟練掌握求動點軌跡方程的基本方法。
2、體會數(shù)學(xué)實驗的直觀性、有效性,提高幾何畫板的操作能力。
(二)過程與方法
1、培養(yǎng)學(xué)生觀察能力、抽象概括能力及創(chuàng)新能力。
2、體會感性到理性、形象到抽象的思維過程。
3、強化類比、聯(lián)想的方法,領(lǐng)會方程、數(shù)形結(jié)合等思想。
(三)情感態(tài)度價值觀
1、感受動點軌跡的動態(tài)美、和諧美、對稱美。
2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發(fā)提出問題和解決問題的勇氣。
二、教學(xué)重點與難點
教學(xué)重點:運用類比、聯(lián)想的方法探究不同條件下的軌跡。
教學(xué)難點:圖形、文字、符號三種語言之間的過渡。
三、教學(xué)方法和手段
教學(xué)方法:觀察發(fā)現(xiàn)、啟發(fā)引導(dǎo)、合作探究相結(jié)合的教學(xué)方法。啟發(fā)引導(dǎo)學(xué)生積極思考并對學(xué)生的思維進行調(diào)控,幫助學(xué)生優(yōu)化思維過程,在此基礎(chǔ)上,提供給學(xué)生交流的機會,幫助學(xué)生對自己的思維進行組織和澄清,并能清楚地、準(zhǔn)確地表達自己的數(shù)學(xué)思維。
教學(xué)手段:利用網(wǎng)絡(luò)教室,四人一機,多媒體教學(xué)手段。通過上述教學(xué)手段,一方面:再現(xiàn)知識產(chǎn)生的過程,通過多媒體動態(tài)演示,突破學(xué)生在舊知和新知形成過程中的障礙(靜態(tài)到動態(tài));另一方面:節(jié)省了時間,提高了課堂教學(xué)的效率,激發(fā)了學(xué)生學(xué)習(xí)的興趣。
教學(xué)模式:重點中學(xué)實施素質(zhì)教育的'課堂模式“創(chuàng)設(shè)情境、激發(fā)情感、主動發(fā)現(xiàn)、主動發(fā)展”。
四、教學(xué)過程
1、創(chuàng)設(shè)情景,引入課題
生活中我們四處可見軌跡曲線的影子。
演示:這是美麗的城市夜景圖。
演示:許多人認為天體運行的軌跡都是圓錐曲線,研究表明,天體數(shù)目越多,軌跡種類也越多。
演示建筑中也有許多美麗的軌跡曲線。
設(shè)計意圖:讓學(xué)生感受數(shù)學(xué)就在我們身邊,感受軌跡,曲線的動態(tài)美、和諧美、對稱美,激發(fā)學(xué)習(xí)興趣。
2、激發(fā)情感,引導(dǎo)探索
靠在墻角的梯子滑落了,如果梯子上站著一個人,我們不禁會想,這個人是直直的摔下去呢?還是劃了一條優(yōu)美的曲線飛出去呢?我們把這個問題轉(zhuǎn)化為數(shù)學(xué)問題就是新教材高二上冊88頁20題,也就是這里的例題1。
高中數(shù)學(xué)說課稿模板3
一、地位作用
數(shù)列是高中數(shù)學(xué)重要的內(nèi)容之一,等比數(shù)列是在學(xué)習(xí)了等差數(shù)列后新的一種特殊數(shù)列,在生活中如儲蓄、分期付款等應(yīng)用較為廣泛,在整個高中數(shù)學(xué)內(nèi)容中數(shù)列與已學(xué)過的函數(shù)及后面的數(shù)列極限有密切聯(lián)系,它也是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材,它可以培養(yǎng)學(xué)生的觀察、分析、歸納、猜想及綜合解決問題的能力。
基于此,設(shè)計本節(jié)的數(shù)學(xué)思路上:
利用類比的思想,聯(lián)系等差數(shù)列的概念及通項公式的學(xué)習(xí)方法,采取自學(xué)、引導(dǎo)、歸納、猜想、類比總結(jié)的'教學(xué)思路,充分發(fā)揮學(xué)生主觀能動性,調(diào)動學(xué)生的主體地位,充分體現(xiàn)教為主導(dǎo)、學(xué)為主體、練為主線的教學(xué)思想。
二、教學(xué)目標(biāo)
知識目標(biāo):
1)理解等比數(shù)列的概念
2)掌握等比數(shù)列的通項公式
3)并能用公式解決一些實際問題
能力目標(biāo):培養(yǎng)學(xué)生觀察能力及發(fā)現(xiàn)意識,培養(yǎng)學(xué)生運用類比思想、解決分析問題的能力。
三、教學(xué)重點
1)等比數(shù)列概念的理解與掌握關(guān)鍵:是讓學(xué)生理解“等比”的特點
2)等比數(shù)列的通項公式的推導(dǎo)及應(yīng)用
四、教學(xué)難點
“等比”的理解及利用通項公式解決一些問題。
五、教學(xué)過程設(shè)計
(一)預(yù)習(xí)自學(xué)環(huán)節(jié)。(8分鐘)
首先讓學(xué)生重新閱讀課本105頁國際象棋發(fā)明者的故事,并出示預(yù)習(xí)提綱,要求學(xué)生閱讀課本P122至P123例1上面。
回答下列問題
1)課本中前3個實例有什么特點?能否舉出其它例子,并給出等比數(shù)列的定義。
2)觀察以下幾個數(shù)列,回答下面問題:
1,……
-1,-2,-4,-8……
1,2,-4,8……
-1,-1,-1,-1,……
1,0,1,0……
①有哪幾個是等比數(shù)列?若是公比是什么?
②公比q為什么不能等于零?首項能為零嗎?
③公比q=1時是什么數(shù)列?
④q>0時數(shù)列遞增嗎?q<0時遞減嗎?
3)怎樣推導(dǎo)等比數(shù)列通項公式?課本中采取了什么方法?還可以怎樣推導(dǎo)?
4)等比數(shù)列通項公式與函數(shù)關(guān)系怎樣?
(二)歸納主導(dǎo)與總結(jié)環(huán)節(jié)(15分鐘)
這一環(huán)節(jié)主要是通過學(xué)生回答為主體,教師引導(dǎo)總結(jié)為主線解決本節(jié)兩個重點內(nèi)容。
通過回答問題(1)(2)給出等比數(shù)列的定義并強調(diào)以下幾點:
①定義關(guān)鍵字“第二項起”“常數(shù)”;
②引導(dǎo)學(xué)生用數(shù)學(xué)語言表達定義:=q(n≥2);
③q=1時為非零常數(shù)數(shù)列,既是等差數(shù)列又是等比數(shù)列。引申:若數(shù)列公比為字母,分q=1和q≠1兩種情況;引入分類討論的思想。
④q>0時等比數(shù)列單調(diào)性不定,q<0為擺動數(shù)列,類比等差數(shù)列d>0為遞增數(shù)列,d<0為遞減數(shù)列。
通過回答問題(3)回憶等差數(shù)列的推導(dǎo)方法,比較兩個數(shù)列定義的不同,引導(dǎo)推出等比數(shù)列通項公式。
法一:歸納法,學(xué)會從特殊到一般的方法,并從次數(shù)中發(fā)現(xiàn)規(guī)律,培養(yǎng)觀察力。
法二:迭乘法,聯(lián)系等差數(shù)列“迭加法”,培養(yǎng)學(xué)生類比能力及新舊知識轉(zhuǎn)化能力。
高中數(shù)學(xué)說課稿模板4
一、教材分析:
1.教材所處的地位和作用:
本節(jié)內(nèi)容在全書和章節(jié)中的作用是:《1.3.1柱體、錐體、臺體的表面積》是高中數(shù)學(xué)教材數(shù)學(xué)2第一章空間幾何體3節(jié)內(nèi)容。在此之前學(xué)生已學(xué)習(xí)了空間幾何體的結(jié)構(gòu)、三視圖和直觀圖為基礎(chǔ),這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是在空間幾何中,占據(jù)重要的地位。以及為其他學(xué)科和今后的學(xué)習(xí)打下基礎(chǔ)。
2.教育教學(xué)目標(biāo):
根據(jù)上述教材分析,考慮到學(xué)生已有的認知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo):
知識與能力:
(1)了解柱體、錐體、臺體的表面積.
(2)能用公式求柱體、錐體、臺體的表面積。
(3)培養(yǎng)學(xué)生空間想象能力和思維能力
過程與方法:
讓學(xué)生經(jīng)歷幾何體的表面積的實際求法,感知幾何體的形狀,培養(yǎng)學(xué)生對數(shù)學(xué)問題的轉(zhuǎn)化化歸能力。
情感、態(tài)度與價值觀:
通過學(xué)習(xí),是學(xué)生感受到幾何體表面積的求解過程,激發(fā)學(xué)生探索、創(chuàng)新意識,增強學(xué)習(xí)積極性。
3.重點,難點以及確定依據(jù):
本著新課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點、難點
教學(xué)重點:柱,錐,臺的表面積公式的推導(dǎo)
教學(xué)難點:柱,錐,臺展開圖與空間幾何體的轉(zhuǎn)化
二、教法分析
1.教學(xué)手段:
如何突出重點,突破難點,從而實現(xiàn)教學(xué)目標(biāo)。在教學(xué)過程中擬計劃進行如下操作:教學(xué)方法。基于本節(jié)課的特點:應(yīng)著重采用合作探究、小組討論的教學(xué)方法。
2.教學(xué)方法及其理論依據(jù):堅持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,根據(jù)學(xué)生的心理發(fā)展規(guī)律,采用學(xué)生參與程度高的探究式討論教學(xué)法。在學(xué)生親自動手去給出各種幾何體的表面積的計算方法,特別注重不同解決問題的方法,提問不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)機會,培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。有效的開發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎(chǔ)上得到發(fā)展。啟發(fā)學(xué)生從書本知識回到社會實踐。提供給學(xué)生與其生活和周圍世界密切相關(guān)的數(shù)學(xué)知識,學(xué)習(xí)基礎(chǔ)性的知識和技能,在教學(xué)中積極培養(yǎng)學(xué)生學(xué)習(xí)興趣和動機,明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動力。
三.學(xué)情分析
我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導(dǎo)。
(1)學(xué)生特點分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué)生特點,積極采用形象生動,形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動參與的學(xué)習(xí)方式,定能激發(fā)學(xué)生興趣,有效地培養(yǎng)學(xué)生能力,促進學(xué)生個性發(fā)展。生理上表少年好動,注意力易分散
(2)動機和興趣上:明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動力
最后我來具體談?wù)勥@一堂課的教學(xué)過程:
四、教學(xué)過程分析
(1)由一段動畫視頻引入:豐富生動的`吸引學(xué)生的注意力,調(diào)動學(xué)生學(xué)習(xí)積極性
(2)由引入得出本課新的所要探討的問題——幾何體的表面積的計算。
(3)探究問題。完全將主動權(quán)教給學(xué)生,讓學(xué)生主動去探究,得到解決問題的思路,鍛煉學(xué)生動手能力,解決實際問題能力。
(4)總結(jié)結(jié)論,強化認識。知識性的內(nèi)容小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì),數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐步培養(yǎng)學(xué)生良好的個性品質(zhì)目標(biāo)。
(5)例題及練習(xí),見學(xué)案。
(6)布置作業(yè)。
針對學(xué)生素質(zhì)的差異進行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有余力的學(xué)生有所提高,
(7)小結(jié)。讓學(xué)生總結(jié)本節(jié)課的收獲。老師適時總結(jié)歸納。
高中數(shù)學(xué)說課稿模板5
各位老師:
今天我說課的題目是《輸入、輸出語句和賦值語句》,內(nèi)容選自于新課程人教A版必修3第一章第二節(jié),課時安排為一個課時。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法與手段分析、教學(xué)過程分析等四大方面來闡述我對這節(jié)課的分析和設(shè)計:
一、教材分析
1.教材所處的地位和作用
我們用自然語言或程序框圖描述的算法,但是計算機是無法“看得懂,聽得見”的。因此還需要將算法用計算機能夠理解的程序設(shè)計語言翻譯成計算機程序。程序設(shè)計語言有很多種。為了實現(xiàn)算法中的三種基本的邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu),各種程序設(shè)計語言中都包含下列基本的算法語句:輸入語句、輸出語句、賦值語句、條件語句和循環(huán)語句.。而我們今天所要學(xué)習(xí)的是前三種算法語句,它們基本上是對應(yīng)于算法中的順序結(jié)構(gòu)的。
2.教學(xué)的重點和難點
重點:正確理解輸入語句、輸出語句、賦值語句的作用。
難點:準(zhǔn)確寫出輸入語句、輸出語句、賦值語句。
二、教學(xué)目標(biāo)分析
1.知識與技能目標(biāo):
(1)正確理解輸入語句、輸出語句、賦值語句的結(jié)構(gòu)。
(2)會寫一些簡單的程序。
(3)掌握賦值語句中的“=”的作用。
2.過程與方法目標(biāo):
(1)讓學(xué)生充分地感知、體驗應(yīng)用計算機解決數(shù)學(xué)問題的方法;并能初步操作、模仿。
(2)通過模仿,操作,探索的過程,體會算法的基本思想和基本語句的用途,提高學(xué)生應(yīng)用數(shù)學(xué)軟件的能力.
3.情感,態(tài)度和價值觀目標(biāo)
(1) 通過對三種語句的'了解和實現(xiàn),發(fā)展有條理的思考,表達的能力,提高邏輯思維能力.
(2) 學(xué)習(xí)算法語句,幫助學(xué)生利用計算機軟件實現(xiàn)算法,活躍思維,提高學(xué)生的數(shù)學(xué)素養(yǎng).
(3) 結(jié)合計算機軟件的應(yīng)用, 增強應(yīng)用數(shù)學(xué)的意識,在計算機上實現(xiàn)算法讓學(xué)生體會成功喜悅.
三、教學(xué)方法與手段分析
1.教學(xué)方法:引導(dǎo)與合作交流相結(jié)合,學(xué)生在體會三種語句結(jié)構(gòu)格式的過程中,讓學(xué)生積極參與,討論交流,充分挖掘三種算法語句的格式特點及意義,在分析具體問題的過程中總結(jié)三種算法語句的思想與特征.
2.教學(xué)手段:運用計算機、圖形計算器輔助教學(xué)
四、教學(xué)過程分析
1. 創(chuàng)設(shè)情境(約5分鐘)
在課的開始,我要求學(xué)生們舉出一些在日常生活中所應(yīng)用到的有關(guān)計算機的例子,如:聽MP3,看電影,玩游戲,打字排版,畫卡通畫,處理數(shù)據(jù)等等,并告訴他們在現(xiàn)代社會里,計算機已經(jīng)成為人們?nèi)粘I詈凸ぷ鞑豢扇鄙俚墓ぞ撸缓蠼又鴨査麄冎恢烙嬎銠C到底是怎樣工作的?通過這個問題引出我們今天所要學(xué)習(xí)的內(nèi)容。(板出課題)
在這個過程中,我讓學(xué)生們將課本學(xué)習(xí)的內(nèi)容與現(xiàn)實生活聯(lián)系在了一起,這樣能夠激起他們對接下來的所要學(xué)習(xí)內(nèi)容的興趣,為整節(jié)課的學(xué)習(xí)打下一個良好的基礎(chǔ)。
2.探究新知(約15分鐘)
這里我先給出一個題目:用描點法作出函數(shù)
的圖象,用描點法作函數(shù)的圖象時,需要先求出自變量與函數(shù)的對應(yīng)值。編寫程序,分別計算當(dāng)
時的函數(shù)值。(程序由我在課前準(zhǔn)備好,教學(xué)中直接調(diào)用運行)
程序:INPUT“x=”;x 輸入語句
y=x^3+3*x^2-24*x+30 賦值語句
PRINT x 輸出語句
PRINT y 輸出語句
END
(學(xué)生們先看,再跟著做,先不必深究該程序如何得來,只要模仿編寫程序,通過運行自己編寫的程序發(fā)現(xiàn)問題所在,進一步提高學(xué)生的模仿能力)
之后,我向?qū)W生們提問:在這個程序中,他們覺得哪些是輸入語句、輸出語句和賦值語句?(同學(xué)們互相交流、議論、猜想、概括出結(jié)論。提示:“input”和“print”的中文意思,還要請學(xué)生們注意到在賦值語句中的賦值號“=”與數(shù)學(xué)中的等號意義不同。)
此過程由老師引導(dǎo),學(xué)生們自己討論并總結(jié)出什么是輸入語句、輸出語句和賦值語句,這樣比老師直接地將知識傳授給他們,學(xué)習(xí)的效果更佳,同時也鍛煉了學(xué)生們思考問題的能力和概括能力,激發(fā)學(xué)習(xí)興趣。
然后給出一個思考題:在1.1.2中程序框圖中的輸入框,輸出框的內(nèi)容怎樣用輸入語句、輸出語句來表達?(學(xué)生討論、交流想法,然后請學(xué)生作答)這樣可以及時應(yīng)用剛剛學(xué)習(xí)的內(nèi)容,并可以將前后所學(xué)知識聯(lián)系起來。
3.例題精析(約12分鐘)
在本環(huán)節(jié)中我為學(xué)生們準(zhǔn)備了三道例題,這三道例題均選自課本的例2、例3和例4,學(xué)生通過這幾道例題的講解,結(jié)合計算機程序上機運用,可以掌握在程序設(shè)計語言中的前三種算法語句,體會到他們在程序中的意義和作用。
4.課堂精練(約4分鐘)
P15 練習(xí) 1.
提問:如果要求輸入一個攝氏溫度,輸出其相應(yīng)的華氏溫度,又該如何設(shè)計程序?(學(xué)生課后思考,討論完成)通過提問啟發(fā)學(xué)生們思考,發(fā)散思維。
5.課堂小結(jié)(約5分鐘)
⑴輸入語句、輸出語句和賦值語句的結(jié)構(gòu)特點及聯(lián)系
⑵應(yīng)用輸入語句,輸出語句,賦值語句編寫一些簡單的程序解決數(shù)學(xué)問題
⑶ 賦值語句中“=”的作用及應(yīng)用
⑷編程一般的步驟:先寫出算法,再進行編程。
6.布置作業(yè)
P23 習(xí)題1.2 A組 1(2)、2
[設(shè)計意圖]課后作業(yè)的布置是為了檢驗學(xué)生對本節(jié)課內(nèi)容的理解和運用程度以及實際接受情況,并促使學(xué)生進一步鞏固和掌握所學(xué)內(nèi)容。
7.板書設(shè)計
高中數(shù)學(xué)說課稿模板6
一、教材分析
1、教材內(nèi)容
本節(jié)課是蘇教版第二章《函數(shù)概念和基本初等函數(shù)Ⅰ》2.1.3函數(shù)簡單性質(zhì)的第一課時,該課時主要學(xué)習(xí)增函數(shù)、減函數(shù)的定義,以及應(yīng)用定義解決一些簡單問題.
2、教材所處地位、作用
函數(shù)的性質(zhì)是研究函數(shù)的基石,函數(shù)的單調(diào)性是首先研究的一個性質(zhì).通過對本節(jié)課的學(xué)習(xí),讓學(xué)生領(lǐng)會函數(shù)單調(diào)性的概念、掌握證明函數(shù)單調(diào)性的步驟,并能運用單調(diào)性知識解決一些簡單的實際問題.通過上述活動,加深對函數(shù)本質(zhì)的認識.函數(shù)的單調(diào)性既是學(xué)生學(xué)過的函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)的單調(diào)性的基礎(chǔ).此外在比較數(shù)的大小、函數(shù)的定性分析以及相關(guān)的數(shù)學(xué)綜合問題中也有廣泛的應(yīng)用,它是整個高中數(shù)學(xué)中起著承上啟下作用的核心知識之一.從方法論的角度分析,本節(jié)教學(xué)過程中還滲透了探索發(fā)現(xiàn)、數(shù)形結(jié)合、歸納轉(zhuǎn)化等數(shù)學(xué)思想方法.
3、教學(xué)目標(biāo)
(1)知識與技能:使學(xué)生理解函數(shù)單調(diào)性的概念,掌握判別函數(shù)單調(diào)性
的方法;
(2)過程與方法:從實際生活問題出發(fā),引導(dǎo)學(xué)生自主探索函數(shù)單調(diào)性的概念,應(yīng)用圖象和單調(diào)性的定義解決函數(shù)單調(diào)性問題,讓學(xué)生領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力.
(3)情感態(tài)度價值觀:讓學(xué)生體驗數(shù)學(xué)的科學(xué)功能、符號功能和工具功能,培養(yǎng)學(xué)生直覺觀察、探索發(fā)現(xiàn)、科學(xué)論證的`良好的數(shù)學(xué)思維品質(zhì).
4、重點與難點
教學(xué)重點
(1)函數(shù)單調(diào)性的概念;
(2)運用函數(shù)單調(diào)性的定義判斷一些函數(shù)的單調(diào)性.
教學(xué)難點
(1)函數(shù)單調(diào)性的知識形成;
(2)利用函數(shù)圖象、單調(diào)性的定義判斷和證明函數(shù)的單調(diào)性.
二、教法分析與學(xué)法指導(dǎo)
本節(jié)課是一節(jié)較為抽象的數(shù)學(xué)概念課,因此,教法上要注意:
1、通過學(xué)生熟悉的實際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實的距離,激發(fā)了學(xué)生求知欲,調(diào)動了學(xué)生主體參與的積極性.
2、在運用定義解題的過程中,緊扣定義中的關(guān)鍵語句,通過學(xué)生的主體參與,逐個完成對各個難點的突破,以獲得各類問題的解決.
3、在鼓勵學(xué)生主體參與的同時,不可忽視教師的主導(dǎo)作用.具體體現(xiàn)在設(shè)問、講評和規(guī)范書寫等方面,要教會學(xué)生清晰的思維、嚴謹?shù)耐评恚⒊晒Φ赝瓿蓵姹磉_.
4、采用投影儀、多媒體等現(xiàn)代教學(xué)手段,增大教學(xué)容量和直觀性.
在學(xué)法上:
1、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和解決問題的能力.
2、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認識到理性思維的一個飛躍.
高中數(shù)學(xué)說課稿模板7
高三第一階段復(fù)習(xí),也稱“知識篇”。在這一階段,學(xué)生重溫高一、高二所學(xué)課程,全面復(fù)習(xí)鞏固各個知識點,熟練掌握基本方法和技能;然后站在全局的高度,對學(xué)過的知識產(chǎn)生全新認識。在高一、高二時,是以知識點為主線索,依次傳授講解的,由于后面的相關(guān)知識還沒有學(xué)到,不能進行縱向聯(lián)系,所以,學(xué)的知識往往是零碎和散亂,而在第一輪復(fù)習(xí)時,以章節(jié)為單位,將那些零碎的、散亂的知識點串聯(lián)起來,并將他們系統(tǒng)化、綜合化,把各個知識點融會貫通。對于普通高中的學(xué)生,第一輪復(fù)習(xí)更為重要,我們希望能做高考試題中一些基礎(chǔ)題目,必須側(cè)重基礎(chǔ),加強復(fù)習(xí)的針對性,講求實效。
一、內(nèi)容分析說明
1、本小節(jié)內(nèi)容是初中學(xué)習(xí)的多項式乘法的繼續(xù),它所研究的二項式的乘方的展開式,與數(shù)學(xué)的其他部分有密切的聯(lián)系:
(1)二項展開式與多項式乘法有聯(lián)系,本小節(jié)復(fù)習(xí)可對多項式的變形起到復(fù)習(xí)深化作用。
(2)二項式定理與概率理論中的二項分布有內(nèi)在聯(lián)系,利用二項式定理可得到一些組合數(shù)的恒等式,因此,本小節(jié)復(fù)習(xí)可加深知識間縱橫聯(lián)系,形成知識網(wǎng)絡(luò)。
(3)二項式定理是解決某些整除性、近似計算等問題的一種方法。
2、高考中二項式定理的試題幾乎年年有,多數(shù)試題的難度與課本習(xí)題相當(dāng),是容易題和中等難度的
試題,考察的題型穩(wěn)定,通常以選擇題或填空題出現(xiàn),有時也與應(yīng)用題結(jié)合在一起求某些數(shù)、式的
近似值。
二、學(xué)校情況與學(xué)生分析
(1)我校是一所鎮(zhèn)普通高中,學(xué)生的基礎(chǔ)不好,記憶力較差,反應(yīng)速度慢,普遍感到數(shù)學(xué)難學(xué)。但大部分學(xué)生想考大學(xué),主觀上有學(xué)好數(shù)學(xué)的愿望。
(2)授課班是政治、地理班,學(xué)生聽課積極性不高,聽課率低(60﹪),注意力不能持久,不能連續(xù)從事某項數(shù)學(xué)活動。課堂上喜歡輕松詼諧的`氣氛,大部分能機械的模仿,部分學(xué)生好記筆記。
三、教學(xué)目標(biāo)
復(fù)習(xí)課二項式定理計劃安排兩個課時,本課是第一課時,主要復(fù)習(xí)二項展開式和通項。根據(jù)歷年高考對這部分的考查情況,結(jié)合學(xué)生的特點,設(shè)定如下教學(xué)目標(biāo):
1、知識目標(biāo):
(1)理解并掌握二項式定理,從項數(shù)、指數(shù)、系數(shù)、通項幾個特征熟記它的展開式。
(2)會運用展開式的通項公式求展開式的特定項。
2、能力目標(biāo):
(1)教給學(xué)生怎樣記憶數(shù)學(xué)公式,如何提高記憶的持久性和準(zhǔn)確性,從而優(yōu)化記憶品質(zhì)。記憶力是一般數(shù)學(xué)能力,是其它能力的基礎(chǔ)。
(2)樹立由一般到特殊的解決問題的意識,了解解決問題時運用的數(shù)學(xué)思想方法。
3、情感目標(biāo):通過對二項式定理的復(fù)習(xí),使學(xué)生感覺到能掌握數(shù)學(xué)的部分內(nèi)容,樹立學(xué)好數(shù)學(xué)的信心。有意識地讓學(xué)生演練一些歷年高考試題,使學(xué)生體驗到成功,在明年的高考中,他們也能得分。
四、教學(xué)過程
1、知識歸納
(1)創(chuàng)設(shè)情景:
①同學(xué)們,還記得嗎?、展開式是什么?
②學(xué)生一起回憶、老師板書。
設(shè)計意圖:
①提出比較容易的問題,吸引學(xué)生的注意力,組織教學(xué)。
②為學(xué)生能回憶起二項式定理作鋪墊:激活記憶,引起聯(lián)想。
(2)二項式定理:
①設(shè)問展開式是什么?待學(xué)生思考后,老師板書= C an+C an-1b1+…+C an-rbr+…+C bn(n∈N__)
②老師要求學(xué)生說出二項展開式的特征并熟記公式:共有項;各項里a的指數(shù)從n起依次減小1,直到0為止;b的指數(shù)從0起依次增加1,直到n為止。每一項里a、b的指數(shù)和均為n。
③鞏固練習(xí)填空
設(shè)計意圖:
①教給學(xué)生記憶的方法,比較分析公式的特點,記規(guī)律。
②變用公式,熟悉公式。
(3)展開式中各項的系數(shù)C , C , C ,… ,稱為二項式系數(shù).展開式的通項公式Tr+1=C an-rbr ,其中r= 0,1,2,…n表示展開式中第r+1項.
2、例題講解
例1求的展開式的第4項的二項式系數(shù),并求的第4項的系數(shù)。
講解過程
設(shè)問:這里,要求的第4項的有關(guān)系數(shù),如何解決?
學(xué)生思考計算,回答問題;
老師指明
①當(dāng)項數(shù)是4時,此時,所以第4項的二項式系數(shù)是,②第4項的系數(shù)與的第4項的二項式系數(shù)區(qū)別。
板書
解:展開式的第4項
所以第4項的系數(shù)為,二項式系數(shù)為。
選題意圖:
①利用通項公式求項的系數(shù)和二項式系數(shù);
②復(fù)習(xí)指數(shù)冪運算。
例2求的展開式中不含的項。
講解過程
設(shè)問:
①不含的項是什么樣的項?即這一項具有什么性質(zhì)?
②問題轉(zhuǎn)化為第幾項是常數(shù)項,誰能看出哪一項是常數(shù)項?
師生討論“看不出哪一項是常數(shù)項,怎么辦?”
共同探討思路:利用通項公式,列出項數(shù)的方程,求出項數(shù)。
老師總結(jié)思路:先設(shè)第項為不含的項,得,利用這一項的指數(shù)是零,得到關(guān)于的方程,解出后,代回通項公式,便可得到常數(shù)項。
板書
解:設(shè)展開式的第項為不含項,那么
令,解得,所以展開式的第9項是不含的項。
因此。
選題意圖:
①鞏固運用展開式的通項公式求展開式的特定項,形成基本技能。
②判斷第幾項是常數(shù)項運用方程的思想;找到這一項的項數(shù)后,實現(xiàn)了轉(zhuǎn)化,體現(xiàn)轉(zhuǎn)化的數(shù)學(xué)思想。
例3求的展開式中,的系數(shù)。
解題思路:原式局部展開后,利用加法原理,可得到展開式中的系數(shù)。
板書
解:由于,則的展開式中的系數(shù)為的展開式中的系數(shù)之和。
而的展開式含的項分別是第5項、第4項和第3項,則的展開式中的系數(shù)分別是:。
所以的展開式中的系數(shù)為
例4如果在(+)n的展開式中,前三項系數(shù)成等差數(shù)列,求展開式中的有理項.
解:展開式中前三項的系數(shù)分別為1,由題意得2× =1+,得n=8.
設(shè)第r+1項為有理項,T =C · ·x,則r是4的倍數(shù),所以r=0,4,8.
有理項為T1=x4,T5= x,T9= .
3、課堂練習(xí)
1.(20__年江蘇,7)(2x+)4的展開式中x3的系數(shù)是
A.6B.12 C.24 D.48
解析:(2x+)4=x2(1+2)4,在(1+2)4中,x的系數(shù)為C ·22=24.
答案:C
2.(20__年全國Ⅰ,5)(2x3-)7的展開式中常數(shù)項是
A.14 B.14 C.42 D.-42
解析:設(shè)(2x3-)7的展開式中的第r+1項是T =C(2x3)(-)r=C 2 ·
(-1)r·x,當(dāng)-+3(7-r)=0,即r=6時,它為常數(shù)項,∴C(-1)6·21=14.
答案:A
3.(20__年湖北,文14)已知(x +x)n的展開式中各項系數(shù)的和是128,則展開式中x5的系數(shù)是_____________.(以數(shù)字作答)
解析:∵(x +x)n的展開式中各項系數(shù)和為128,∴令x=1,即得所有項系數(shù)和為2n=128.
∴n=7.設(shè)該二項展開式中的r+1項為T =C(x)·(x)r=C ·x,令=5即r=3時,x5項的系數(shù)為C =35.
答案:35
五、課堂教學(xué)設(shè)計說明
1、這是一堂復(fù)習(xí)課,通過對例題的研究、討論,鞏固二項式定理通項公式,加深對項的系數(shù)、項的二項式系數(shù)等有關(guān)概念的理解和認識,形成求二項式展開式某些指定項的基本技能,同時,要培養(yǎng)學(xué)生的運算能力,邏輯思維能力,強化方程的思想和轉(zhuǎn)化的思想。
2、在例題的選配上,我設(shè)計了一定梯度。第一層次是給出二項式,求指定的項,即項數(shù)已知,只需直接代入通項公式即可(例1);第二層次(例2)則需要自己創(chuàng)造代入的條件,先判斷哪一項為所求,即先求項數(shù),利用通項公式中指數(shù)的關(guān)系求出,此后轉(zhuǎn)化為第一層次的問題。第三層次突出數(shù)學(xué)思想的滲透,例3需要變形才能求某一項的系數(shù),恒等變形是實現(xiàn)轉(zhuǎn)化的手段。在求每個局部展開式的某項系數(shù)時,又有分類討論思想的指導(dǎo)。而例4的設(shè)計是想增加題目的綜合性,求的n過程中,運用等差數(shù)列、組合數(shù)n等知識,求出后,有化歸為前面的問題。
六、個人見解
高中數(shù)學(xué)說課稿模板8
一、教材分析:
1、教材的地位與作用:
線性規(guī)劃是運籌學(xué)的一個重要分支,在實際生活中有著廣泛的應(yīng)用。本節(jié)內(nèi)容是在學(xué)習(xí)了不等式、直線方程的基礎(chǔ)上,利用不等式和直線方程的有關(guān)知識展開的,它是對二元一次不等式的深化和再認識、再理解。通過這一部分的學(xué)習(xí),使學(xué)生進一步了解數(shù)學(xué)在解決實際問題中的應(yīng)用,體驗數(shù)形結(jié)合和轉(zhuǎn)化的思想方法,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、應(yīng)用數(shù)學(xué)的意識和解決實際問題的能力。
2、教學(xué)重點與難點:
重點:畫可行域;在可行域內(nèi),用圖解法準(zhǔn)確求得線性規(guī)劃問題的最優(yōu)解。
難點:在可行域內(nèi),用圖解法準(zhǔn)確求得線性規(guī)劃問題的最優(yōu)解。
二、目標(biāo)分析:
在新課標(biāo)讓學(xué)生經(jīng)歷“學(xué)數(shù)學(xué)、做數(shù)學(xué)、用數(shù)學(xué)”的`理念指導(dǎo)下,本節(jié)課的教學(xué)目標(biāo)分設(shè)為知識目標(biāo)、能力目標(biāo)和情感目標(biāo)。
知識目標(biāo):
1、了解線性規(guī)劃的意義,了解線性約束條件、線性目標(biāo)函數(shù)、可行解、可行
域和最優(yōu)解等概念;
2、理解線性規(guī)劃問題的圖解法;
3、會利用圖解法求線性目標(biāo)函數(shù)的最優(yōu)解.
能力目標(biāo):
1、在應(yīng)用圖解法解題的過程中培養(yǎng)學(xué)生的觀察能力、理解能力。
2、在變式訓(xùn)練的過程中,培養(yǎng)學(xué)生的分析能力、探索能力。
3、在對具體事例的感性認識上升到對線性規(guī)劃的理性認識過程中,培養(yǎng)學(xué)生運用數(shù)形結(jié)合思想解題的能力和化歸能力。
情感目標(biāo):
1、讓學(xué)生體驗數(shù)學(xué)來源于生活,服務(wù)于生活,體驗數(shù)學(xué)在建設(shè)節(jié)約型社會中的作用,品嘗學(xué)習(xí)數(shù)學(xué)的樂趣。
2、讓學(xué)生體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造,培養(yǎng)學(xué)生勤于思考、勇于探索的精神;
3、讓學(xué)生學(xué)會用運動觀點觀察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關(guān)系,滲透辯證唯物主義認識論的思想。
三、過程分析:
數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué)。因此,我將整個教學(xué)過程分為以下六個教學(xué)環(huán)節(jié):
1、創(chuàng)設(shè)情境,提出問題;
2、分析問題,形成概念;
3、反思過程,提煉方法;
4、變式演練,深入探究;
5、運用新知,解決問題;
6、歸納總結(jié),鞏固提高。
1、創(chuàng)設(shè)情境,提出問題:
在課堂教學(xué)的開始,我以一組生動的動畫(配圖片)描述出在神奇的數(shù)學(xué)王國里,有一種算法廣泛應(yīng)用于工農(nóng)業(yè)、軍事、交通運輸、決策管理與規(guī)劃等領(lǐng)域,應(yīng)用它已節(jié)約了億萬財富,還被列為20世紀對科學(xué)發(fā)展和工程實踐影響最大的十大算法之一。它為何有如此大的魅力?它又是怎樣的一種神奇算法呢?我以景激情,以情激思,點燃學(xué)生的求知欲,引領(lǐng)學(xué)生進入學(xué)習(xí)情境。
【高中數(shù)學(xué)說課稿】相關(guān)文章:
高中數(shù)學(xué)的說課稿06-17
高中數(shù)學(xué)說課稿05-20
高中數(shù)學(xué)說課稿01-10
(薦)高中數(shù)學(xué)說課稿06-07
高中數(shù)學(xué)說課稿4篇01-12
高中數(shù)學(xué)說課稿15篇01-11